Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Хрома Физико-химические свойства

При выплавке жаропрочных сплавов с заданными физико-химическими свойствами роль образующегося шлака исключительно велика. Качество выплавляемого жаропрочного сплава прежде всего определяется физико-химическим составом шлака. Изменяя состав шлака, физические свойства и температуру можно увеличить или уменьшить содержание в сплаве кремния, хрома, алюминия и других примесей.  [c.277]


Хром и его пластичные сплавы обладают рядом специфических физико-химических свойств высокие температура плавления (1900° С), жаростойкость и коррозионная стойкость в ряде агрессивных жидких и газовых средах, малый удельный  [c.419]

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА И важнейшие соединения хрома  [c.9]

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ХРОМА  [c.9]

Карбиды хрома нашли весьма широкое применение в технике в связи с тем, что они обладают рядом ценных свойств. Ниже приведены некоторые физико-химические свойства карбидов хрома [27, 43, 1].  [c.18]

Физико-химические свойства хрома и его соединений  [c.198]

Сплавы на основе хрома обладают рядом специфических физико-химических свойств — жаростойкостью, коррозионной стойкостью в ряде агрессивных жидкостей и газов, малой плотностью. Находят широкое применение как конструкционные материалы  [c.196]

Электролитический хром — металл серебристо-белого цвета с синеватым оттенком. Удельный вес электролитического хрома 6,9-=-7,1, температура плавления 1530°. Электролитический хром обладает рядом ценных физико-химических свойств, благодаря которым он широко используется в промышленности. Твердость электролитического хрома, выраженная в единицах Бринеля, достигает 1000—1100 НВ, что значительно превышает твердость закаленной стали. Большая твердость наряду с низким коэффициентом трения, жаростойкостью, высокой коррозионной стойкостью и другими свойствами обусловливают высокую износостойкость хромированных деталей.  [c.161]

Основные физико-химические свойства хрома представлены в гл. I.  [c.147]

Легированный чугун. Введение в состав чугуна хрома, никеля, меди, титана, молибдена и других легирующих элементов сопровождается улучшением его механических и физико-химических свойств. В ряде случаев можно получать отливки со специальными свойствами.  [c.217]

Легированные чугуны. Эти чугуны наряду с обычными примесями содержат легирующие элементы хром, никель, медь, титан, молибден и др. Легируют главным образом серые чугуны, а в некоторых случаях и белые. Легирующие элементы улучшают механические свойства чугуна и придают ему особые физико-химические свойства. Содержание серы в них допускается не выше 0,03—0,04%, а фосфора до 0,30%. Хром повышает твердость, прочность и износоустойчивость чугуна, никель улучшает обрабатываемость.  [c.72]


Благодаря высоким механическим и физико-химическим свойствам легированные чугуны получили применение в различных отраслях промышленности. Из них делают коленчатые валы, детали компрессоров, поршни двигателей. Чугуны с содержанием хрома 2% и никеля 1% идут на изготовление зубчатых колес, деталей автомобилей, дизелей, штампов, так как имеют высокую прочность. Чугуны с содержанием до 5—6% никеля и 1 —1,5% хрома имеют после закалки высокую твердость (NB 400) и износоустойчивость, они идут на изготовление штампов, поршневых колец.  [c.72]

Благодаря высоким физико-химическим свойствам хрома электролитическое покрытие хромом — хромирование — находит широкое применение в машиностроении.  [c.159]

Введение в металл добавок различных элементов для улучшения или придания ему особых механических или физико-химических свойств (жаростойкость, кислотоупорность, износостойкость и др.) называют легированием. В качестве легирующих добавок используют углерод, хром, марганец, кремний, никель, молибден, вольфрам, ванадий и другие элементы. Чаще всего легируют одновременно несколькими элементами.  [c.28]

Железо уменьшает пластичность алюминия, электропроводность и коррозионную стойкость. Однако в жаропрочных алюминиевых сплавах железо (в сочетании с никелем) является полезным. Кремний, наряду с другими при.месями (медь, магний, марганец, никель, хром, цинк), способствует упрочнению алюминиевых сплавов. На механические и физико-химические свойства кремний влияет так же, как и железо.  [c.58]

Хром (Сг) по ряду своих физико-химических свойств близок к молибдену и вольфраму. Элемент открыт в 1797 г. Название свое он получил от греческого слова хрома — цвет, окраска, за многообразие окрасок своих соединений. Запасы хро.ма в земной коре превышают запасы остальных тугоплавких металлов, вместе взятых. Физические н механические свойства хрома приведены ниже  [c.401]

Химико-термическая обработка получила весьма широкое применение за последние годы. Сущность этого метода обработки заключается в насыщении поверхностных слоев детали (путем диффузии) такими элементами, как углерод, азот, хром и др. Каждый из них придает стали определенные механические и физико-химические свойства, что позволяет заменять дефицитные и дорогостоящие легиро -ванные стали. Большинство процессов химико-термической обработки выполняется в газовой и жидкой средах с применением специальных печей при полной автоматизации процесса.  [c.400]

Диффузионная металлизация. Это процесс насыщения стали алюминием, хромом, кремнием, бором и др. с целью упрочнения или придания особых физико-химических свойств поверхностному слою изделия.  [c.53]

Физико-химические свойства электролитического хрома  [c.5]

Благодаря целому ряду ценных свойств металлического хрома хромирование имеет большое практическое применение во многих областях промышленности и особенно в машиностроении. Физико-химические свойства электролитического хрома приведены в табл. 16.  [c.51]

Все эти факторы тесно связаны с физико-механическими свойствами металлов и, следовательно, с их химическим составом и структурой. Из всех элементов химического состава на интенсивность износа режущего инструмента влияют наиболее значительно углерод, алюминий, титан, кремний и в меньшей степени молибден, марганец, хром и вольфрам. Степень влияния этих элементов выражают следующими условными элементами.  [c.328]

Химико-термическая обработка является одним из способов изменения химического состава стали и предназначена для придания поверхностным слоям деталей машин требуемых физико-механических свойств повышенных износостойкости, коррозионной стойкости, окалино- и жаростойкости. Производится химико-термическая обработка путем нагрева детали в специальной среде (карбюризаторе) до определенной температуры, выдержки при этой температуре и охлаждения. При этом происходит насыщение поверхностного слоя активным элементом (хромом, азотом, углеродом, алюминием и т. п.), в результате чего изменяются физико-механические свойства материала обрабатываемой детали износостойкость, жаростойкость, коррозионная устойчивость и т. п.  [c.398]


Установить определенную связь между составом, физико-химическими, механическими свойствами и эрозионной стойкостью в газовых потоках не удается [8, 9, 51—53]. В результате испытаний в манометрической бомбе показано, что стойкость железа снижается при легировании никелем и хромом. Сплавы на основе никеля имеют низкую стойкость, более стойки сплавы кобальта и молибдена,  [c.268]

Хром является распространенным и относительно дешевым среди легирующих элементов, которые применяются как для легированных, так и для спеченных сталей с целью повышения прочности, износостойкости и придания им особых физико-механических свойств. Хром образует с углеродом карбиды различного химического состава, которые-прочнее и устойчивее цементита. Свойства спеченных хромистых сталей в значительной степени зависят от способов введения хрома и деформирующейся в зависимости от этого структуры.  [c.80]

По сравнению с другими методами нанесения покрытий металлами (горячим, термодиффузионным, распыления и др.) электроосаждение имеет ряд преимуществ и позволяет регулировать толщину слоя, экономно расходовать цветные металлы, получать покрытия с необходимыми физико-химическими и механическими свойствами. Этот метод незаменим при покрытии металлами с высокой температурой плавления, такими, как хром, никель, медь, серебро, платина, железо.  [c.111]

Основные физико-химические и механические свойства меди, никеля и хрома следующие  [c.159]

Хромомарганцевые стали, разработанные Институтом металлургии АН ГССР, по сравнению с хромоникелевым сплавом (Х18Н9Т) содержат хрома на 3—5% меньше. Для стабилизации аустенитной структуры в сплавах этого типа вводится азот в количестве до 0,4%. Хромомарганцевые сплавы по своим физико-химическим свойствам приближаются к хромоникелевым, а по некоторым другим даже превосходят их. Химический состав и механические свойства хромомарганцевых сплавов приведены в табл. IV. 1, IV. 2.  [c.61]

Применение взрывного прессования при изготовлении катодов позволяет в полной мере использовать все перечисленные выше преимущества. В работе [200] приведены результаты практического применения энергии взрыва для прессования катодов, некоторые рекомендации по технологии осуществления этого метода, основные свойства полученных образцов. Взрывным прессованием получены заготовки катодов из композиции W+I5%Ti, сплава хрома, никеля, кремния (37% Сг, 10% Ni, остальное Si) и дисилицида молибдена (MoSi2) с плотностями соответственно 65—80, 75—80 и 78—85%. Заготовки подвергались последующему вакуумному спеканию с одновременной очисткой материалов от примесей. Условия вакуумной термообработки выбирали с учетом физико-химических свойств материалов. Окончательная плотность катодов составила 95—98% теоретической.  [c.133]

Впервые проведенное нами исследование (гл. IV) влияния нитратов на процесс образования и свойства фосфатной пленки показало, что при фосфатировании в присутствии нитратов кальция, стронция, бария, никеля, кобальта, алюминия, хрома и железа на поверхности металла образуется пленка нового вида — фосфато-окисная пленка — гладкая и аморфная. По внешнему виду и цвету она напоминает окисную, образующуюся на стали при щелочном оксидировании. Однако но механизму образования, химическому составу и многим физико-химическим свойствам она является разновидностью фосфатной пленки.  [c.113]

ЛЕГИРОВАННЫЕ СТАЛИ (нем. legieren — легировать). Стали со специальными прибавками разных элементов никеля, хрома, молибдена, вольфрама, ванадия, способствующих улучшению механических свойств или приданию стали особых физико-химических свойств, напр, кислотоупорности, жаропрочности, амагнитности и т. д. Различают стали низколегированные и высоколегированные.  [c.55]

Элементы, придающие стали снецальные физико-химические свойства — коррозионную стойкость, особые магнитные характеристики, заданные коэффициенты термического расширения, неизменность упругих свойств и т. д. (хром, алюминий, никель, кобальт и др.).  [c.113]

Коэффициенты перехода зависят не только от физико-химических свойств элемента, но и от вида покрытия. Так, например, при легировании хромом (до количеств [Сг] я 1%) через покрытия различных видов были получены следующие значения Кпер [20]  [c.120]

В зависимости от физико-химических свойств активной фазы или среды, содержащей хром, различают четыре вида диффузионного хромирования твердое, из паро ой фазы, газовое и жидкое.  [c.706]

Хром — металл стального цвета с голубоватым оттенком. Наличие многих ценных физико-химических свойств обусловило хромовым покрытиям широкое применение во всех областях машиностроения. Удельный вес хрома 6,7 температура плавле-ния 1520 , атомный вес 52. В соединениях хром шестивалеитен и трехвалентен. Нормальный потенциал равен—0,56 в электрохимический эквивалент 0,323 г/а-час. Ценными физическими свойствами являются красивая декоративная внешность хрома, устойчивый блеск, не тускнеюш,ий от времени, хорошая отражательная способность, жаростойкость и неокисляемость при высоких температурах.  [c.106]

Размерная нестабильность сплавов урана определяется и их составом [163]. Кальцийтермическ1 й уран и магнийтер-мический уран имеют различные коэффициенты роста. Уран, содержащий алюминий, железо, ванадий, германий, палладий или титан, испытывает при термоциклировании большое формоизмеиеиие, а добавки молибдена, ниобия, платины и хрома уменьшают абсолютную 1 еличину коэффициента роста. Влияние химического состава на формоизменение сплавов урана при термоциклировании проявляется не только в связи с изменением объемного эффекта и уровня физико-механических свойств при переходе от одного типа упаковки к другому, но и с атомным механизмом этого перехода, характером размещения образующихся фаз и др.  [c.52]


Хромирование. Термодиффузионное насьпцение хромом порошковых деталей способствует повышению их физико-химических и механических свойств, уменьшению поверхностной пористости, повышению сопротивляемости коррозии, окалино-и износостойкости. Наиболее простым методом хромирования порошковых деталей является так назьшаемый контактный способ. Этот способ состоит в насьпцении изделий хромом в твердом ме-таллизаторе. В ходе высокотемпературной химикотермической обработки возникает хромосодержащая газовая фаза, благодаря которой и происходит насьпцение поверхности детали хромом. Состав металлизатора и режимы термодиффузионного хромирования приведены в табл. 9.16 (состав 1).  [c.484]

Как известно, к алкалоидам относятся азотосодержащие вещества сложного состава их строгая и однозначная классификация по химическому строению затруднена. Имея основной характер, алкалоиды должны оказывать сильное влияние на кинетику катодных процессов. Действительно, небольшие добавки алкалоидов к электролитам для нанесения гальванопокрытий благоприятно влияют на физико-механические свойства катодных осадков меди [564] (кофеин), цинка [565] (стрихнин, бруцин), хрома [566] (морфин, папаверин, кодеин). Добавки алкалоидов (цинхонин, кофеин, теобромин) к раствору для химического никелирования повышают блеск осадков никеля [567]. Алкалоиды могут применяться так-  [c.221]

Металловедению ванадия, ниобия, молибдена, вольфрама, хрома и их сплавов посвяш ены обстоятельные монографии советских ученых [1—4 и др.]. Физико-химические принципы разработки жаропрочных сплавов в связи с диаграммами состояния, основанные на учении академика Н. С. Курнакова, развиты в обобш,ающих трудах [5—8]. Структура и свойства тугоплавких металлов и их сплавов детально рассмотрены в монографиях [9—12]. Систематически изложены также теория и практика дисперсионного упрочнения сплавов железа, никеля и кобальта [13—16], Однако дисперсионное упрочнение тугоплавких металлов, представляюш.ее наиболее важный метод повышения жаропрочности их сплавов, пока еш,е не получило адекватного освещения. Исследования дисперсионного упрочнения тугоплавких мета.рлов карбидами, нитридами, оксидами, боридами переходных металлв, опубликованные в периодической литературе, были детально проанализированы с позиций физичеС кого металловедения [11], однако необходима систематизация и дальнейшее обобщение имеющихся данных в аспекте электронного строения и физико-химического анализа сплавов. В монографии сделана попытка восполнить этот пробел.  [c.3]


Смотреть страницы где упоминается термин Хрома Физико-химические свойства : [c.116]    [c.198]    [c.514]    [c.21]    [c.42]    [c.150]    [c.429]    [c.261]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.423 ]



ПОИСК



Физико-химические свойства

Физико-химические свойства хрома и его соединений

Физико-химические свойства электролитического хрома

Химическая физика

Хром Свойства

Хрома

Хромали

Хромиты



© 2025 Mash-xxl.info Реклама на сайте