Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сварка Применение газов защитных

Основными способами получения заготовок для деталей машин являются литье, ковка, штамповка, прокат и сварка. Сварка как самостоятельный способ формообразования заготовок может рассматриваться лишь условно, так как она применяется в основном для неразъемного соединения отдельных частей заготовки, ранее полученных другими методами. За последние годы созданы новые способы сварки, позволяющие отказаться в ряде случаев от получения заготовок методом ковки и литья. В частности, электрошлаковая сварка коренным образом изменила технологию изготовления ряда изделий и дала возможность сваривать металлы любой толщины. Внедрена сварка в среде защитных газов, намного расширившая сферу ее применения, особенно при соединении тонких деталей из легированных сталей и цветных металлов. Сварка изделий позволяет значительно упростить технологию изготовления многих конструкций, изготовлять детали по частям взамен литья или ковки детали, заменить цельнолитые или кованые детали из дорогой высоколегированной стали комбинированными, в которых только отдельные элементы, находящиеся в наиболее тяжелых эксплуатационных условиях, изготовляются из легированной стали.  [c.345]


Сопоставляя показатели различных методов сварки, необходимо в первую очередь выделить сварку под флюсом и сварку в углекислом газе. Указанные методы, характеризуясь значительно более высокой производительностью труда и низкой себестоимостью сварочных операций, обеспечивают в то же время и более высокое качество металла шва по сравнению с ручной дуговой сваркой. Применение сварки в защитных газах позволяет избежать шлаковых включений в швах, являющихся практически неизбежными при ручной дуговой сварке. Последнее обстоятельство является особенно важным, учитывая высокие требования к надежности работы основных деталей паровых и газовых турбин. Поэтому одним из основных направлений повышения технологичности сварных конструкций является широкое внедрение автоматических и полуавтоматических методов сварки [73].  [c.72]

За последнее время работами Института электросварки имени Е. О. Патона, ЦНИИТмаш и других исследовательских организаций и заводов достигнут значительный прогресс в области расширения ассортимента сталей, свариваемых механизированными методами, и увеличен объем применения последних. Наибольшего развития при этом достигли различные методы сварки в среде защитных газов и, в первую очередь, в углекислоте. Сварка в защитных газах, наряду с высоким качеством швов и производительностью процесса, по своей гибкости приближается к ручной дуговой сварке.  [c.72]

Значителен объем работ по сварке труб различных сечений в соединениях встык, при приварке к трубным доскам, в процессе монтажа в неудобных положениях. При этом необходимо широкое использование существующих и создание новых специализированных автоматов и полуавтоматов. Для выполнения таких работ целесообразно применение установок для сварки в среде защитных газов, для сварки труб средних и больших диаметров — установок для контактной сварки.  [c.111]

Если автоматическую сварку в среде защитных газов используют для наплавки деталей, то полуавтоматическую - для сварки листовых панелей. Область применения механизированной наплавки в среде диоксида углерода распространяется на восстановление стальных и чугунных деталей диаметром > 12 мм широкой номенклатуры, работающих в различных условиях. Восстановлению подлежат как гладкие, так и шлицевые валы.  [c.293]

Сварка плавящимся электродом в среде защитных газов находит широкое применение при изготовлении конструкций из среднелегированных высокопрочных сталей средней и большой толщины. Конструктивные элементы подготовки кромок под сварку в среде защитных газов следует выполнять в соответствии с требованиями ГОСТ 14771-76 (в ред. 1989 г.). В зависимости от разновидности способа сварки в защитных газах подготовка кромок должна быть различной.  [c.312]


Сварка в среде защитных газов никеля и его сплавов обеспечивает высокое качество сварных соединений, отвечающих эксплуатационным требованиям. Дуговую сварку вольфрамовым электродом выполняют на прямой полярности с применением аргона первого сорта и без присадочного или с присадочным (чаще всего проволока НМц 2,5) металлом. Сварку рекомендуют проводить на медной подкладке или с защитой корня шва аргоном, с соплами горелок, как при сварке титана. Сварку никеля осуществляют при минимально возможной длине дуги, повыщенных силе тока и скорости сварки.  [c.464]

При сварке в среде защитных газов легирование наплавленного металла достигается в основном выбором соответствующего присадочного металла (электродная проволока сплошного сечения, порошковая и др.) или применением дополнительных наплавочных материалов (паст, перед сваркой наносимых на кромки, или присадочных прутков, порошков, засыпаемых на поверхность перед сваркой или вдуваемых в сварочную ванну, дополнительных проволок, прутков, укладываемых на поверхность или подаваемых в сварочную ванну, и др.).  [c.528]

Следует ожидать расширения применения сварных и, в частности, штампосварных конструкций автоматической и полуавтоматической сварки под флюсом, электрошлаковой сварки, сварки в среде защитных газов, контактной сварки.  [c.4]

Окисление наплавленного металла и выгорание легирующих элементов (углерода, марганца, кремния и др.) происходят в результате соединения его с кислородом воздуха. Эти процессы снижают прочность наплавленного металла. Из воздуха в наплавленный металл проникает также азот, который образует нитриды. Нитриды несколько повышают предел прочности металла, но зато значительно ухудшают его пластичность. Для защиты металла от окисления, выгорания легирующих элементов и насыщения азотом при сварке и наплавке применяют электродные обмазки и флюсы, которые при плавлении образуют шлак, надежно изолирующий металл от окружающей среды. Хорошие. результаты также дает применение сварки в среде защитных газов.  [c.139]

Требуемое содержание феррита в металле швов можно также обеспечить при сварке в защитных газах путем применения активного защитного газа определенного состава. При этом необходимый состав защитного газа выбирается на основании результатов сварки опытного шва, выполняемого с плавным изменением состава газа (рис. 62, 63) [10, 16, 30].  [c.62]

К разновидностям электродуговой сварки относится сварка в среде защитных газов аргонодуговая и в среде углекислого газа. Основная область применения этих способов — сварка деталей малой толщины, деталей из высоколегированных сталей и цветных сплавов.  [c.59]

Основным преимуществом дуговой электросварки в среде защитных газов перед газовой сваркой является более концентрированный нагрев что позволяет вести сварку на больших скоростях (при большей производительности) и при меньшем короблении и меньшей чувствительности к трещинам. Кроме того, в ряде случаев при дуговой сварке в среде защитных газов представляется возможным получать хорошее качество сварных соединений без применения флюсов. Представляется возможным успешно сваривать малые толщины, что затруднительно прп других способах дуговой электросварки. Благодаря медленному износу вольфрамовых электродов легко можно осуществлять автоматизацию процесса.  [c.563]

Электродная проволока. При сварке в среде защитных газов плавящимся электродом необходимый состав металла шва обеспечивается применением электродной проволоки соответствующего состава. Для получения качественных швов при сварке в углекис-  [c.455]

Сварка в среде защитных газов. Сварка меди может производиться неплавящимися угольным или вольфрамовым электродами в среде аргона или азота. Наибольшее применение получила сварка вольфрамовым электродом. Сварка в среде защитных газов произ водится на постоянном токе прямой полярности. Режимы ручной сварки меди вольфрамовым электродом в среде аргона приведены в табл. 297. В качестве присадочного металла применяются прутки  [c.522]


Для уменьшения затрат и расхода металла на испытания можно применять составной образец. Он представляет собой постоянную раму с пропилами, в прямоугольный вырез которой помещают две фрезерованные вставки из испытываемого металла. Вставки закрепляются в раме сваркой. Используется комплект рам с пропилами различной длины. Пробу проводят путем сварки обеих вставок с применением той же методики, что и при сварке образцов по рис. 9. Для получения большей точности результатов рекомендуется выполнять сварку в среде защитных газов электродами из того же металла, что и свариваемые вставки. По окончании испытания закрепляющие швы удаляют фрезой и вынимают сваренные вставки. Освободившиеся рамы с пропилами используют для последующих испытаний.  [c.118]

Сварка в среде защитных газов может осуществляться механизированным способом с помощью сварочных полуавтоматов и автоматов и вручную. Область применения различных методов газоэлектрической сварки указана в табл. 1.  [c.314]

Таблица 23 Область применения различных методов сварки в среде защитных газов при монтаже трубопроводов Таблица 23 Область <a href="/info/697386">применения различных</a> <a href="/info/200177">методов сварки</a> в <a href="/info/318426">среде защитных</a> газов при монтаже трубопроводов
Самое широкое применение имеет дуга с жесткой характеристикой (т. е. на участке, где напряжение дуги не зависит от тока) при ручной дуговой сварке, автоматической сварке под флюсом, аргонодуговой сварке неплавящимся электродом и др. Дуга с возрастающей характеристикой используется при автоматической сварке под флюсом на повышенных режимах и сварке в атмосфере защитных газов плавящимся электродом. Дуга с падающей характеристикой мало устойчива и имеет ограниченное применение.  [c.301]

Более широкое применение находит сварка. За последние годы созданы новые способы сварки, в частности электрошлаковая, которая коренным образом изменила технологию изготовления ряда изделий и дала возможность сваривать металлы любой толщины. Внедрена сварка в среде защитных газов, разработаны способы сварки трением, электронным лучом в вакууме, ультразвуком. При значительном упрощении технологии изготовления элементов сварной конструкции по сравнению с технологией литья или ковки заготовки в целом сварная заготовка обычно получается более легкой по весу. Ее отдельные элементы, находящиеся в наиболее тяжелых условиях, могут быть выполнены из легированной стали. В качестве отдельных элементов сварных заготовок могут применяться сортовой и фасонный прокат, штампованные и кованые заготовки и отливки.  [c.214]

Неплавящиеся электроды применяют главным образом для сварки в защитном газе и плазменной сварки и резки. Неплавящимися электродами служат вольфрамовая проволока — прутки. Вольфрам-— тугоплавкий металл, температура его плавления достигает 4500 °С, поэтому при сварке его расход незначителен. Применение вольфрамовых электродов позволяет осуществлять аргонодуговую сварку различных высоколегированных сталей и цветных металлов без присадочного или с присадочным материалом, обеспечивая при этом хорошую защиту зоны сварки инертным газом. ГОСТ 23949—80 предусматривает несколько марок вольфрамовых электродов  [c.148]

Основной способ сварки плавлением — электродуговая сварка — имеет много разновидностей, связанных со степенью механизации, — ручная, полуавтоматическая, автоматическая, с применением различных защитных веществ — толстого покрытия на электродах (при ручной сварке), флюсов, защитных газов или порониговой проволоки при механизированной сварке, контролируемой атмосферы (защитных газов или вакуума) при некоторых способах дуговой и электронно-лучевой сварки. Сварка плавлением применяется для весьма широкого круга цветных металлов и сплавов, а также неметаллов — стекла, керамики, графита.  [c.5]

Весьма благоприятные металлургические условия при сварке высокохромистых сталей создает сварка в инертных защитных газах, как правило, в аргоне и в некоторых смесях на его основе. Причем в основном используют сварку неплавящимся вольфрамовым электродом, а присадочный материал подбирают аналогичным желаемому составу наплавленного металла. При этом виде сварки в шоп удается вводить почти без потерь такие весьма активные элементы (улучшающие свойства металла шва), как титан и алюминий. Однако по причинам понижения производительности сварки и ее низкой экономичности применение этого метода обычтю ограничивается изготовлением изделий малых толщин и выполнением корневого валика в многослойных швах металла больших толщин, например в изделиях турбостроения.  [c.265]

Для предотвращения указанных дефектов при дуговой сварке меди рекомендуются сварка в атмосфере защитных газов (аргона, гелия, азота и их смесей) применение сварочной и присадочио проволок, содержащих сильные раскислители (титан, цирконий, бор, фосфор, кремний и др.).  [c.235]

Создание новых конструкций автоматов для дуговой сварки под флюсом обеспечило повышенное качество сварных соединений и увеличило производительность труда. Полуавтоматы и автоматы для дуговой сварки в среде защитных газов (аргона, гелия, азота) с применением вольфрамовых э.лектро-дов позволили сваривать детали из нержавеющих и жаропрочных сталей, а также цветных металлов. Для точечной сварки сконструированы многоэлектродные аппараты, которые позволили вести сварку стенок кузовов электровозов 24 парами электродов при работе 8 сварочных трансформаторов мощностью по 240 ква каждый.  [c.104]


Данные, полученные при оценке тенденций потре( ления сварочных материалов, хорошо согласуются с р( зу ьтатами опроса экспертов при выборе перспективны способов сварки. Например, учитывая внедрение в мг шиностроение сталей повышенной прочности и увелг чение объема применения различных сплавов, сварк в среде защитных газов и главным образом инертных безусловно, будет применяться в более широких обт емах по сравнению с существующим уровнем и в ряд случаев вытеснит ручную сварку покрытым электродо и под флюсом. Поэтому вполне закономерно, что боль щинство экспертов высказалось за увеличение потреб ления защитных газов и, особенно, инертных.  [c.226]

Метод сварки выбирается с учетом материала свариваемых элементов, сложности выполняемой работы и степени ответственности объекта. В основном используется сварка плавящимся электродом. Применяются ручная, полуавтоматическая и другие виды сварки. Технологический процесс сварки должен обеспечивать достаточно высокие качества шва прочность соединения и плотность металла. Наиболее высокое качество обеспечивается сваркой в среде защитных газов. Углеродистые и низколегированные стали обычно свариваются в среде углекислого газа, коррозионно-стойкие стали типа 08XI8H10T свариваются с применением аргонодуговой сварки. В наиболее ответственных случаях используется сварка ненлавящимся электродом. Сварка может осуществляться с применением всех промышленных методов, обеспечивающих полное проплавление шва и требуемое качество сварных соединений. Необходимо в максимальной степени использовать автоматические и полуавтоматические методы сварки.  [c.207]

Сфера применения еварных конструкций в машиностроении и приборостроении непрерывно расширяется. Электрошлаковая бездуговая сварка применяется для соединения поковок, штамповок, отливок, проката при изготовлении изделий энергомашиностроения, химической аппаратуры и других объектов. Автоматической сваркой под флюсом соединяют всевозможные конструкции из углеродистых, низколегированных и высоколегированных сталей и некоторых цветных сплавов. Огромное распространение в производстве имеют современные методы сварки в среде защитных газов, аргона и углекислого газа, обеспечивающие высокую производительность и экономичность вследствие низкой стоимости применяемых материалов. Непрерывно расширяется применение контактной сварки, в особенности в транспортном машиностроении, в сельскохозяйственных машинах и т. д.  [c.166]

Сварка алюминия и его сплавов. Наилучшее качество сварного шва дает аргоно-дуговая сварка алюминия и его сплавов. Аргопо-дуговая сварка производится в защитной среде инертных газов (аргона и. 1и гелия) и требует специальной аппаратуры, что затрудняет ее применение для целей ремонта.  [c.60]

Экономному расходованию металлов в машиностроении способствует широкое применение современных способов сварки электрошлаковой, автоматической под флюсом, сварки в среде защитных газов и т. п. Внедрение сварочных процессов позволяет изготовлять сварнолитые, сварнокованые, штампосварные конструкции, обеспечивающие значительное облегчение веса машин и снижение трудоемкости их изготовления (табл. 349). Высокую эффективность обеспечивают сварные станины, сварнолитыв  [c.460]

При сварке углеродистых сталей уменьшения склонности к образованию горячих трещин добиваются снижением содержания углерода в наплавленном металле вследствие применения сварочной проволоки с меньшим содержанием углерода по сравнению с основным металлом. Одновременно шов легируют марганцем и кремнием, которые обеспечивают сохранение необходимых механических свойств металла шва. Кроме того, присутствие марганца связывает серу в соединение MnS, в котором сера находится в виде твердого раствора. Температура плавления такого раствора выше 1180°С, поэтому в шве снижается количество легкоплавких примесей, способствующих образованию горячих трещин. Для сварки углеродистых сталей можно рекомендовать ручную дуговую сварку покрытыми электродами, сварку са-мозащитной порошковой проволокой, под флюсом, сварку в атмосфере защитных газов (аргона, аргона с добавлением кислорода или углекислого газа), электрошлаковую, газовую или контактную сварку.  [c.508]

Дуговая сварка в среде защитных газов (рис. 1.20). К особенностям дуговой сварки в защитных газах, обеспечивающих более эфектив-ное ее применение в сравнении с другими способами сварки (в первую очередь с ручной дуговой сваркой покрытым электродом), относятся  [c.50]

Для уменьшения возможности налипания на основной металл брызг следует применять специальные эмульсии, наносимые на кромки перед сваркой. Применение импульсной сварки также позволяет несколько снизить разбрызгивание. Наличие на поверхности швов трудноудаляемой пленки оксидов делает практически невозможной сварку в углекислом газе многопроходных швов. Сварку плавяшимся электродом в защитных газах выполняют полуавтоматически или автоматически на постоянном токе обратной полярности (табл. 9.11. .. 9.13).  [c.377]

В табл. 5.4 приведены способы сварки паропроводов отечественных и зарубежных ТЭС. В отечественной теплоэнергетике автоматические способы сварки в среде защитных газов применяются в ограниченном объеме в отличие от теплоэнергетики за рубежом. В Германии на фирме Маннесман при изготовлении паропроводов широкое применение имеют  [c.276]

К трудностям, возникающим при склеивании деталей из ПМ, относят [37] незаинтересованность их изготовителей в проведении на стадии формования мероприятий, облегчающих соединение, а также наличие большого числа методов подготовки одного и того же материала. В литературе отмечают также предубеждение некоторых работников против клеевых соединений, обусловленное неинформиро-ванностью и отсутствием специальных знаний. Так, не совсем справедливым считают представление о склеивании как о сложном и дорогостоящем процессе [42]. Эксперименты в течение одного года по применению различных способов соединения по отношению к партии изделий в количестве 200 штук, относящихся к областям точной механики или электротехники, показали, что расходы на проведение процесса склеивания стальных и алюминиевых деталей выше (условный фактор стоимости 1,7) только расходов на контактную точечную сварку (фактор стоимости 1) и на рельефную сварку (фактор стоимости 1,3). Более высокий, чем для склеивания, уровень расходов характерен для различных видов клепки, выполнения винтовых и болтовых соединений, пайки твердым припоем и сварки в среде защитного газа. Высокая экономичность достигается при склеивании деталей типа вал-втулка (табл. 7.1).  [c.445]

В настоящее время наибольшим распространением в нашей промышленности пользуется способ автоматической сварки металлическим электродом под слоем флюса, разработанный в 1940 г. Институтом электросварки им. акад. Е. О. Патона Академии наук УССР. Получает также широкое применение автоматическая и полуавтоматическая сварка в среде защитных газов (аргона, углекислого газа).  [c.166]

Новым металлическим материалом, занимающим видное место в машиностроении, являются титан и сплавы на его основе. Это серебристо-белый металл с температурой плавления 1660° и удельным весом 4,5 г/сж . Технический титан высокой чистоты содержит не более 0,1% примесей (Ре Мп А1 С 51 N1), имеет невысокую прочность, хорошую пластичность, по свойствам приближаясь к чистому железу с углеродом образует очень твердые карбиды титана. Татан удовлетворительно обрабатывается давлением (ковкой, прессованием, прокаткой), сваривается дуговой сваркой в атмосфере защитных газов. Имеет высокую стойкость против коррозии в пресной, морской воде и в некоторых кислотах. Примеси резко повышают прочность, одновременно снижая пластичность титана. Изготовляемый в СССР технический титан, содержащий до 0,5% примесей имеет 6в =55—75 кГ1мм 6 = 20—25%. К к конструкционные материалы Б машиностроении применяются сплавы титана с ванадием, молибденом, хромом, марганцем, вольфрамом, танталом, ниобием, углеродом, алюминием, оловом. Наибольшее применение  [c.191]


Сварка в атмосфере защитных газов в зависимости от степени лехаиизации процессов подачи присадочной или сварочной проволоки и неремещения сварочной горелки может быть ручной, полуавтоматической и автоматической. При этом особенности схемы процессов и области их преимущественного применения предопределили наибольшее распространение различных видов сварки по степени их механизации.  [c.294]

Области применения сварки в защитных газах охватывают очень широкий круг материалов и изделий (узлы летательных аппаратов, элементы атомных установок, корпуса и трубопроводы химических аппаратов и т. п.), для которых сварка покрытым электродом или автоматическая под флюсом не обеспечивает необходимого качества сварного соединения либо их нельзя применить из-за их ограниченных технологических возможностей. По сравнению с указанными способами сварка в атдюсфере защитных газов имеет следующие преимущества  [c.295]

Качество сварных соединений в значительной степени определяется надежностью защиты сварочной ванны и максимально разогретой зоны от воздействия окружающей среды, а также отсутствием в шве нор, шлаковых включений и других дефектов. Обеспечение указанных условий получения качественных соединений также связано с выбором способа сваркп. Наиболее эффективны в этом отношении сварка в атмосфере защитных газов и вакууме. Особенно важно правильно выбрать способ сварки при применении материалов, свойства которых ухудшаются при незначительном насыщении газами из окружающего воздуха. Например, для таких тугоплавких металлов, как титан, ниобий, а также для алюминия, магния и высоколегированных сталей предпочтительна дуговая сварка в атмосфере аргона высокой чистоты, а для молибдена и его сплавов — электронным лучом в вакууме. В то же время углеродистые и легированные конструкционные стали успешно сваривают всеми способами дуговой и электрошлаковой сварки. При соответствующем выборе режима и сварочных материалов получают сварные соединения, равнопрочные основному металлу при статических и динамических нагрузках.  [c.377]


Смотреть страницы где упоминается термин Сварка Применение газов защитных : [c.64]    [c.329]    [c.361]    [c.99]    [c.206]    [c.401]    [c.295]    [c.75]    [c.356]    [c.253]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.150 , c.155 ]



ПОИСК



Газы защитные для сварки

Защитные газы

Классификация способов сварки в защитных газах и область их применения

Разновидности и рациональные области применения дуговой сварки в защитных газах

Сварка Применение

Сварка в защитных газах

Сварка в среде инертных защитных газов Принцип, преимущества и области применения сварки в среде защитных газов

Способы и области применения сварки в защитных газах



© 2025 Mash-xxl.info Реклама на сайте