Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расчет статически неопределимых систем методом деформаций

Расчет статически неопределимых систем методом деформаций  [c.53]

По условиям определения усилий конструкции разделяются на статически определимые и статически неопределимые. В статически определимых системах усилия могут быть найдены только из уравнений равновесия, в статически неопределимых для расчета усилий требуется привлечение дополнительных параметров, характеризующих свойства или условия работы конструкции [1,3]. Известны два основных метода расчета статически неопределимых систем метод сил, в котором за неизвестные принимаются усилия в стержнях системы (а после их определения могут быть найдены любые деформации и перемещения), и метод пере.ме-щений, где за неизвестные принимаются перемещения (а после их определения могут быть найдены любые усилия),  [c.407]


Ж е м о ч к и н Б. H., Расчет статически неопределимых систем. Метод угловых деформаций, 1927, Расчет рам, Госстройиздат, 1933.  [c.168]

В предыдущем параграфе рассматривался расчет статически неопределимых систем методом сил, при котором за неизвестные принимались некоторые силы. В ряде случаев более простое решение дает метод деформаций, при котором за неизвестные принимаются величины каких-либо перемещений. Эти перемещения следует выбрать так, чтобы, зная их, можно было определить перемещения любой точки системы.  [c.53]

Вообще в выборе основных неизвестных и метода получения уравнений для них можно провести аналогию с теорией расчета статически неопределимых систем, излагаемой в курсе строитель ной механики стержневых систем. Там, как известно, есть три основных метода метод сил, метод деформаций и смешанный метод. Неизвестные силы определяются из уравнений деформаций (канонические уравнения в методе сил), неизвестные перемещения (углы поворота и смещения узлов рам)—из уравнений равновесия.  [c.30]

В третьем издании книги почти все главы существенно переработаны и дополнены новыми материками. Введены новые разделы расчет стержневых плоских и пространственных систем расчет на подвижную нагрузку расчет коленчатого вала расчеты с учетом пластических деформаций пластинки и оболочки тонкостенные резервуары. Включены новые методы определения перемещений, расчет статически неопределимых систем по методу перемещений. Увеличено число примеров расчета. Приведены данные по международной системе единиц СИ.  [c.9]

Совокупность этих уравнений называют канонической системой метода сил (существуют и другие методы расчета статически неопределимых систем, например метод деформаций и др.). В об-  [c.190]

На примере расчета статически неопределимых систем проявляется формальная аналогия между решением задач упругости и решением задач пластичности методом переменных параметров упругости для стержней. В характеристику жесткости сечения стержня в упругом случае вносят поправку с помощью интегральной функции пластичности при упругопластическом деформировании задачу решают в деформациях, а не в напряжениях (усилиях), если приходится находить решение методом последовательных приближений. Например, теорему о трех моментах для многопролетных неразрезных балок при упругопластическом деформировании по ана-  [c.46]


Решение монтажных и температурных задач производится обычными методами расчета статически неопределимых систем. Специфика проявляется лишь при составлении уравнений перемещений— учитываются температурные деформации, зазоры, натяги и т. д.  [c.54]

Способность пластичных материалов испытывать значительные пластические деформации перед разрушением очень удачно использована советскими учеными для разработки новых методов расчета статически неопределимых систем по несущей способности и по расчетным предельным состояниям.  [c.45]

Приведенное выше изло.жение в какой-то степени подобно классическому построению расчета статически неопределимых стержневых систем в строительной механике по так называемому методу сил, энергетическое обоснование которого также сводится к отысканию именно таких значений лишних неизвестных, при которых потенциальная энергия деформации системы оказывается минимальной. Сходство еще более усиливается, если представить себе расчет статически неопределимой системы (например, фермы), где за лишние неизвестные приняты внутренние усилия (например, усилия в стержнях), т. е. если основную (статически определимую) систему получать из заданной не путем отбрасывания элементов, связей и т. п., а путем перерезания их.  [c.61]

При расчете статически неопределимой системы на основании геометрического метода определения перемещений (см. 1.3) надо составить для нее р уравнений статики. Далее следует, рассмотрев совместную деформацию элементов системы (картину деформации или картину перемещений), составить зависимости между абсолютными удлинениями стержней, которые называются уравнениями совместности перемещений (уравнениями совместности или уравнениями перемещений) в геометрической форме. Число уравнений совместности должно равняться к системы. Затем надо выразить входящие в эти уравнения AI-, пользуясь (11.10) или (11.19), через (V, и АТ , где / — номер стержня или участка, в результате чего получим к уравнений совместности в физической форме. Уравнения статики в совокупности с уравнениями совместности в физической форме образуют систе-  [c.57]

Выбранный для расчета трубопровод, как и большинство реальных трубопроводов, представляет собой статически неопределимую систему. Для определения кривой статического прогиба таких систем используем метод освобождения конца и переноса сил и моментов [31 ]. При этом для каждого участка трубопровода учитываем лишь его деформации изгиба и кручения, а деформациями растяжения и сжатия пренебрегаем.  [c.176]

При расчете статически неопределимых стержневых систем усилия вычисляются по уравнениям деформаций, связывающим усилия и перемещения. Несмотря на то, что определение бокового давления грунта также представляет собой статически неопределимую задачу, ее решение по методу Кулона и по теории В. В. Соколовского производится без введения какой-либо связи между усилиями и  [c.96]

Для решения статически неопределимых задач помимо применения метода сечений и, следовательно, использования уравнений равновесия, известных из статики, приходится составлять дополнительные уравнения, основанные на рассмотрении условий и характера деформации системы. Эти уравнения называют уравнениями перемещений. Их количество зависит от того, насколько число неизвестных усилий больше числа независимых уравнений статики или, как говорят, от степени статической неопределимости системы. Здесь ограничимся рассмотрением систем, в которых число неизвестных лишь на единицу больше числа уравнений статики (один раз статически неопределимые системы). Методику их расчета рассмотрим на примерах,  [c.208]

Частные случаи этого равенства были получены в работах [54, 129]. Можно показать, что деформации рассматриваемой оболочки непрерывны. Последнее не очевидно для рассматриваемого метода расчета, так как введение условия равнопрочности приводит систему, в общем случае статически неопределимую, к статически определимой. Однако в данной задаче осевое и кольцевое относительное удлинение  [c.29]


В XIX веке развитие теории сооружений определялось главным образом задачами расчета ферм. Достаточно приемлемые решения здесь могли быть получены, исходя из допущения, что узлы фермы шарнирные и, следовательно, все стержни подвергаются действию лишь осевых усилий. Внедрение в строительную технику железобетона сопровождалось широким использованием различных типов рамных систем, конструкций с жесткими узлами. Эти конструкции отличаются, как правило, высокой степенью статической неопределимости, и составляющие их элементы работают главным образом на изгиб. Разработанные ранее методы обнаружили вскоре в применении к такого рода системам свою несостоятельность и взамен их в практику проектирования вошли новые методы, основанные на учете деформаций.  [c.505]

Расчеты на прочность изделий сложной формы. Излагая в предыдущей главе теорию сложного напряженного состояния, мы совершенно обошли молчанием вопрос о том, каким образом определить напряженное состояние в телах, подверженных действию сил. Общая задача об определении напряжений и деформаций в упругом теле произвольной формы, подверженном действию произвольных внешних сил, является предметом теории упругости, которая представляет собою раздел механики сплошной среды и развивается в направлении создания и усовершенствования методов решения соответствующих краевых задач для некоторых систем дифференциальных уравнений в частных производных. Несмотря на огромные успехи математической теории упругости, далеко не все задачи, представляющие практический интерес, удается решить во многих случаях, даже когда точное решение или метод его отыскания известны, практическое использование этого решения для расчета на прочность затруднительно ввиду чрезвычайной сложности и громоздкости вычислений. с другой стороны, знания распределения напряжений в теле в упругой стадии его работы еще недостаточно для суждения о прочности. Как мы убедились на примере статически неопределимых стержневых систем, переход некоторых элементов в состояние текучести еще не означает разрушения системы в целом. Тем более это относится к телу, находящемуся в условиях сложного напряженного состояния. Достижение состояния текучести в одной или нескольких точках само по себе не является опасным окруженный упругими областями, материал не имеет фактической возможности течь. В то же время, после того как состояние текучести где-та достигнуто, дальнейшее увеличение нагрузки приводит к образованию пластических зон конечных размеров.  [c.104]

Учитывая приведенную выше аналогию, все наиболее эффективные современные методы расчета статически неопределимых систем (канонические уравнения деформаций, способ ортогонали-зации взаимно нулевых эпюр и т. п.) можно перенести в теорию упругости, именно в метод П. Ф. Папковича.  [c.62]

В связи с этим первое издание подверглось большой переработке и существенным дополнениям. Наряду с использованием значительной части задач предыдущего издания в сборник включено на основе опыта советской школы известное количество новых задач. Кроме того, авторы сочли необходимым пополнить сборник новыми разделами, отражающими развитие науки о сопротивлении материалов за последние годы. В частности, введены такие разделы расчет статически неопределимых систем по допускаемым нагрузкам расчет толкостенных стержней расчет элементов конструкций и машин на ползучесть определение деформаций и расчет статически неопределимых балок по методу начальных параметров.  [c.5]

Для расчета статически неопределимых систем, работающих на изгиб, широко используется метод сил. В нем за основные неизвестные принимают обобщенные реактивные силы в отброшенных связях системы. Простые один раз статически неопределимые балки, работающие на изгиб, можно решать, используя способ сравнения линейных и угловьк перемещений, или записывая замкнутую систему уравнений из уравнений статики и уравнений совместности деформаций.  [c.8]

Понятие энергии деформации позволило развить эффективные вариационные методы расчета статически неопределимых систем (обобщенные позже 62 на произвольные упругие системы). Первоначально это было сделано итальянским инженером Л. Менабреа для ферм . Общая же теория была развита в 1865 г. Дж. Коттерилом и независимо от него в 1873—1875 гг. А. Кастиль-яно 8. Некоторые неясности в изложении работ Кастильяно дослужили причиной продолжительной дискуссии среди немецких инженеров, в которой приняли активное участие О. Мор и Г. Мюллер-Вреслау. Последний указал, в частности, что во многих случаях результаты расчета по теоремам Кастильяно совпадают с прямыми расчетами по методу Максвелла — Мора.  [c.62]

Сопоставляя формулы (1.52) и (1.66), можно прийти к выводу, что метод сил является менее алгоритмичным, чем метод перемеш,е-ний. При использовании метода перемеш,ений решают систему линейных уравнений с размерами 6р X 6р. Матрица системы уравнений при этом симметрична и положительно определенна. При использовании метода сил сначала следует рассчитать основную систему, для чего надо решить систему уравнений с матрицей [Aq, имеюш,ую размеры 6р X 6р. Матрица А(,] несимметрична. Далее решаем систему канонических уравнений, число которых равно степени статической неопределимости (6s—6р). При ручном счете метод перемещ,ений с учетом продольных деформаций стержней практически не используют из-за большого числа неизвестных и требований, предъявляемых к точности вычислений. В то же время метод сил находит широкое распространение при расчете стержневых систем, вследствие того, что при ручном счете легко определить усилия в основной статически определимой системе.  [c.44]

Выше мы уже видели (см. стр. 385), что при вычислении дополнительных напряжений в статически неопределимых системах в качестве неизвестных выгодно принимать углы поворота жестких узлов. Систематическое использование углов поворота в расчете рамных систем было введено Акселем Вендиксеном ), разработавшим так называемый метод угловых деформаций. Рассматривая рамную систему, в которой допустимо пренебречь линейными смещениями узлов"), можно использовать хорошо известное выражение для изгибающего момента Мщп, действующего на конец т стержня тп (рис. 197)  [c.505]



Смотреть страницы где упоминается термин Расчет статически неопределимых систем методом деформаций : [c.2]    [c.7]    [c.268]    [c.397]   
Смотреть главы в:

Сопротивление материалов  -> Расчет статически неопределимых систем методом деформаций



ПОИСК



379 — Расчет статически неопределимые — Расчет

Деформация Методы расчетов

Метод деформаций

Метод сил для расчета статически неопределимых систем

Метод систем

Метод статический

Неопределимость статическая

Расчет статический

Система статическая

Система тел статически неопределимая

Системы Расчет

Статически неопределимые системы Расчет



© 2025 Mash-xxl.info Реклама на сайте