Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Постановка краевой задачи нелинейной теории упругости

Постановка краевой задачи нелинейной теории упругости  [c.28]

Как следует из вышеизложенного, постановка краевой задачи нелинейной теории упругости существенным образом зависит от используемой системы координат.  [c.28]

В монографии представлены результаты теоретических и численных исследований, выполненных авторами в области механики и вычислительной математики слоистых тонкостенных анизотропных оболочек, а также неклассическая математическая модель нелинейного деформирования тонкостенных слоистых упругих композитных пластин и оболочек, отражающая специфику их механического поведения в широкой области изменения нагрузок, геометрических и механических параметров, структур армирования. Предложен и реализован эффективный метод численного решения краевых задач неклассической теории многослойных оболочек, основанный на идеях инвариантного погружения. Получены решения задач начального разрушения, устойчивости, свободных колебаний слоистых конструкций распространенных форм — прямоугольных и круговых пластин, цилиндрических панелей, цилиндрических и конических оболочек. Дана оценка влияния на характеристики напряженно-деформированного состояния и критические параметры устойчивости таких факторов, как поперечные сдвиговые деформации, обжатие нормали, моментность основного равновесного состояния, докритические деформации. Проведены систематические сравнения полученных решений с решениями, найденными при использовании некоторых других известных в литературе неклассических моделей, в том числе и в трехмерной постановке.  [c.2]


Постановку краевых задач теории многократного наложения больших деформаций рассмотрим на примере задач о последовательном или одновременном образовании концентраторов напряжений (отверстий) в предварительно напряженном бесконечно протяженном нелинейно-упругом или вязкоупругом теле. При этом в случае одновременного образования форма отверстий может быть задана как в момент их образования, так и в конечном состоянии (для вязкоупругого материала — в некоторый заданный момент времени). В случае последовательного образования отверстий предполагается, что форма каждого отверстия задана в момент образования этого отверстия.  [c.37]

Исследование динамических задач теории упругости в нелинейной постановке относится к одной из сложных и мало разработанных областей механики твердого деформируемого тела. В то же время существует целый класс задач, в которых на некоторое конечное напряженное статическое состояние накладываются малые динамические возмущения. Это позволяет в строгой постановке строить решение статической задачи, а динамику явлений, основываясь на малости динамических возмущений, исследовать на базе линеаризованных относительно некоторой малой окрестности напряженного состояния соотношений. При этом в полном объеме сохраняется присущая нелинейным задачам специфика постановки краевых задач в зависимости от используемой системы координат и используемых в процессе решения тензорных и векторных величин, описывающих напряженное состояние среды.  [c.34]

В книге даны основы механики сплошной среды (МСС) физическая трактовка основных понятий и статистическое обоснование законов МСС аксиоматика МСС кинематика и теория внутренних напряжений в средах физические законы — сохранения массы, импульса, энергии и баланса энтропии методы получения замкнутых систем уравнений, основные типы граничных условий и постановки краевых задач МСС. Даны замкнутые системы уравнений для классических сред (газов, жидкостей, упругих тел) и для сред со сложными свойствами (вязко-упругих, нелинейно вязких, упруго- и вязко-пластических, плазмы и др.) при действии электромагнитного поля. Дана теория размерностей и подобия с ревизионным анализом уравнений МСС, критериями подобия и моделирования, с примерами автомодельных решений.  [c.3]


Из других работ кафедры, заметно обогативших науку о прочности и нашедших внедрение в турбостроении и других отраслях промышленности, следует указать цикл теоретических и экспериментальных исследований по колебаниям механических систем в нелинейной постановке с учетом энергетических потерь в материале, в специальном покрытии и в сочленениях исследования краевых осесимметричных задач теории упругости применительно к элементам турбомашин с использованием современных вычислительных машин. В своих исследованиях кафедра существенное внимание уделяет изучению механики новых типов неметаллических материалов. Применительно к мягким армированным материалам на кафедре была разработана новая теория прочности.  [c.10]

Если вариационные постановки для основных краевых задач математической физики и теории упругости известны давно, то для задач с односторонними ограничениями сформулированы только в последнее время. Одной из первых на эту тему является работа [379], в которой показано, что контактная задача теории упругости с односторонними ограничениями (задача Синьорини) сводится к вариационному неравенству. В дальнейшем вариационные неравенства и их приложения в механике и физике рассматривались в [26, 71, 85, 115, 167, 216, 283, 376, 381, 486 и др.]. В частности, статические и динамические контактные задачи теории упругости с трением вариационными методами рассматривались в работах [185—189, 326], контактные задачи для тел с трещинами — в [34, 75, 86, 164, 165, 175, 271, 365, 575], линейные и нелинейные контактные задачи теории оболочек — в [229, 310], а граничные вариационные неравенства применительно к решению контактных задач — в [138, 366—368, 432, 510, 534, 540]. Алгоритмы решения вариационных задач с ограничениями в виде неравенств, их теоретическое обоснование и вопросы численной реализации рассмотрены в [72, 111, 338, 420, 475 и др.]. Подробный обзор работ по применению вариационных неравенств в задачах механики твердого деформируемого тела дан в [365].  [c.82]

Третья глава посвящена построению нового приближенного решения стохастической задачи теории упругости мнкронеоднородных сред, названного полным корреляционным приближением, в перемещениях с учетом реального вида моментных функций упругих свойств. Рассматривается единая для большинства работ в зтом направлении постановка статистически нелинейной краевой задачи в перемещениях с граничными условиями, обеспечивающими однородность маг  [c.9]

Рассматриваемая в данной главе стохастическая краевая задача теории упругости является основой статистической механики композитов со случайной структурой. Начало систематическому изучению этой задачи положено работой И.М. Лифшица и Л.Н. Розенцвейга [160] применительно к поликристаллам, в дальнейшем многочисленные результаты были обобщены в монографиях [62, 130, 162, 172, 247, 296, 320 и др.]. При единой практически для всех работ в этом направлении постановке задачи, связанной с представлением упругих модулей микронеоднородной среды как случайных статистически однородных функций координат и выбором граничных условий в виде, обеспечивающим однородность макроскопических деформаций, а также общности подхода к решению с использованием метода функции 1 ина уравнений теории упругости в перемещениях для неограниченной изотропной или анизотропной среды существуют различия в получаемых результатах для эффективных свойств композитов и, в большей мере, для оценки полей напряжений и деформаций в компонентах композитов. Это обусловлено статистической нелинейностью исследуемой задачи и построением приближенных решений, которые неодинаково адекватны физической модели композита, в частности, его структуре.  [c.39]


Смотреть страницы где упоминается термин Постановка краевой задачи нелинейной теории упругости : [c.30]    [c.78]   
Смотреть главы в:

Динамические контактные задачи для предварительно напряженных полуограниченных тел  -> Постановка краевой задачи нелинейной теории упругости



ПОИСК



656 —• Постановка задачи

I краевые

Задача краевая

Задача упругости

Задачи теории упругости

К постановке зг ачи

Краевая задача нелинейная

Краевой задачи постановка

Нелинейная теория

Нелинейная теория упругости

Нелинейные задачи

Постановка задачи теории упругости

Теория упругости

Упругость Теория — см Теория упругости

Упругость нелинейная



© 2025 Mash-xxl.info Реклама на сайте