Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние геометрии резца на скорость резания

ВЛИЯНИЕ ГЕОМЕТРИИ РЕЗЦА НА СКОРОСТЬ РЕЗАНИЯ  [c.161]

Скорость резания, допускаемая стойкостью резца, зависит не только от тех величин, которые указаны в формуле (11). Огромное влияние на скорость резания оказывает целый ряд и других факторов, как например, геометрия резца, охлаждение. Для упрощения формулы влияние их на скорость резания учитывается с помощью поправочных коэфициентов.  [c.129]

Влияние на скорость резания геометрии резцов (коэффициент-А з). Геометрия резца характеризуется в нормальном к лезвию сечении углами а, в основной плоскости углами ф и и в плоскости резания углом Я, (см. фиг. 14—16).  [c.223]


Большое влияние на скорость резания оказывает и геометрия режущей части резца, его углы. Так например, при увеличении переднего угла уменьшаются деформация стружки и усилие резания, следовательно, можно увеличить скорость резания. Однако при чрезмерном увеличении переднего угла ослабляется головка резца, ухудшается отвод тепла, понижается его стойкость, что приводит к необходимости уменьшения скорости резания. При увеличении заднего угла резца уменьшается площадка контакта его с изделием, уменьшается трение, следовательно, увеличивается стойкость резца. При выборе скорости резания нужно учитывать также главный угол резца в плане ф. От величины этого угла зависит ширина стружки, т. е. длина участвующей в резании режущей кромки. При малой величине угла ф понижается давление на режущую кромку, уменьшается тепловая нагрузка, повышается стойкость резца, что позволяет увеличить скорость резания. В формулу для определения скорости резания вводится коэффициент, учитывающий геометрию резца.  [c.323]

Как было показано выше, силы резания Р , Ру и Р зависят от свойств обрабатываемого материала, размеров среза, скорости резания, геометрии резца, смазывающе-охлаждающей жидкости, износа резца. Рассмотрим влияние перечисленных факторов на силы резания.  [c.58]

Под стойкостью инструмента Т понимают суммарное время (мин) его работы между переточками на определенном режиме резания. Стойкость токарных резцов, режущая часть которых изготовлена из разных инструментальных материалов, составляет 30— 90 мин. Стойкость инструмента зависит от физико-механических свойств материала инструмента и заготовки, режима резания, геометрии инструмента и условий обработки. Наибольшее влияние на стойкость оказывает скорость резания.  [c.272]

Сущность его заключается в том, что двумя изолированными друг от друга резцами одинаковой формы и геометрии режущих частей, но изготовленными из разных материалов (например быстрорежущая сталь и твёрдый сплав) и поэтому обладающими неодинаковыми термоэлектрическими свойствами, одновременно снимаются стружки одинакового сечения. Если считать, что температура резания на обоих резцах одинакова в силу одинаковых условий работы, то получится как бы один термоэлемент, составленный из двух различных материалов резцов обрабатываемый материал в данном случае играет роль спайки и на показания милливольтметра влияния не оказывает. Показание милливольтметра обусловливается термоэлектрическими свойствами материалов резцов и температурой резания. Метод двух резцов позволяет сравнивать обрабатываемость различных материалов путём экспериментального установления скоростей резания, вызывающих одинаковую температуру на режущей кромке.  [c.284]


Приведенные формулы действительны при работе резцами с геометрией режущей части, предложенной Колесовым, при работе без охлаждения с подачами 1...4 мм/об, при глубине резания в пределах 1...3 мм и скорости резания в пределах 40... 175 м/мин. На значение составляющих усилий резания оказывает существенное влияние износ по задней грани. При износе резца по задней грани 0,8... 1,0 мм вертикальная составляющая усилия резания Д,  [c.355]

Из элементов геометрии резца наиболее сильное влияние на размерный износ оказывает задний угол. При работе на высоких скоростях резания увеличение этого угла с 8° до 15° приводило к повышению относительного износа на 30 /д. Однако наблюдались случаи, при точении на низких и средних скоростях ( о < 150 м[мин), когда увеличение заднего угла способствовало уменьшению относительного износа . Передний угол и прочие элементы геометрии резца влияют на относительный износ слабее.  [c.135]

Стабилизировать эквивалентную силу можно также путем управления скоростью резания, однако этот способ связан с необходимостью изменения скорости резания в широких пределах, что, в свою очередь, оказывает существенное влияние на размерную стойкость режущего инструмента. Оказалось целесообразнее использовать изменения скорости резания для управлений размерной стойкостью каждого экземпляра режущего инструмента. Стабилизировать эквивалентную силу можно также, изменяя геометрию резания. Как показали проведенные исследования, поворачивая, например, токарный резец вокруг оси, проходящей через его вершину перпендикулярно к обработанной поверхности, можно стабилизировать эквивалентную силу, а тем самым и повысить точность обрабатываемых деталей до трех раз. При повороте резца изменяются передний угол у> задний угол а, углы в плане ф и ф1, угол наклона главной режущей кромки и т. д.  [c.26]

Размер микронеровностей на обработанной поверхности зависит от метода и режимов обработки, геометрии резца, свойств обрабатываемого материала, вибрации станка, смазочно-охлаждающей жидкости. Ориентировочные значения классов шероховатости поверхности при различных видах обработки приведены в табл. 5. При принятом виде обработки наиболее существенное влияние на шероховатость поверхности оказывает подача и скорость резания. С увеличением подачи шероховатость поверхности увеличивается, вследствие увеличения остаточных гребешков. Увеличение скорости резания приводит к улучшению шероховатости поверхности. На шероховатость поверхности влияют также механические свойства материала заготовки. Заготовки из специальных автоматных сталей с повышенным содержанием серы и марганца позволяют получать лучшую шероховатость поверхности, чем из конструкционных сталей.  [c.212]

Как видно из табл. 17, величина износа резцов, покрытых твердосмазочным покрытием, значительно меньше, чем у резцов без покрытия. В целях оценки влияния скорости резания V на величину износа резцов с покрытиями были проведены три сравнительных испытания по изложенной выше методике на тех же заготовках резцами с теми же геометрией и покрытием. Результаты испытаний приведены в табл. 18 (при глубине резания =1,5 мм и подаче 5 = 0,195 мм/об).  [c.142]

Стойкостью инструмента называется время работы инструмента от одной заточки до другой, измеренное в минутах его действительной работы. Стойкость инструмента зависит от материала и геометрии резца, материала обрабатываемой детали, элементов режима резания, методов охлаждения и других факторов. Наибольшее влияние на стойкость инструмента (по сравнению с подачей 5 и глубиной резания 1) оказывает скорость резання V. Между скоростью  [c.62]


Влияние геометрии режущих кромок инструмента и величины подачи на образование шероховатости показано на рис. 12. При постоянной величине подачи, изменив только вспомогательный угол в плане ф1=45° на угол ф =0°, получаем поверхность без неровностей, так как //=0 (рис. 12, а). С увеличением подачи 5 увеличивается высота неровности Н (рис. 12, б). На рис. 12, в показано влияние радиуса закругления вершины резца на высоту неровности Н. Чем больше радиус, тем меньше неровности Н. При увеличении скорости резания шероховатость уменьшается. Шероховатость увеличивается при увеличении подачи, углов в плане, уменьшении заднего угла,  [c.30]

Влияние геометрии фрезы (коэффициент К , как и геометрии резца, может оказывать значительное влияние на период стойкости. Угол резания б фрезы в пределах, обусловленных силами резания, оказывают малое влияние на скорость. Задний угол а назначается  [c.428]

Величина и знак остаточных напряжений после механической обработки зависят от обрабатываемого материала, его структуры, геометрии и состояния режущего инструмента, от эффективности охлаждения, вида и режима обработки. Величина остаточных напряжении может быть значительной (до 1000 МПа и выше) и оказывает существенное влияние на эксплуатационные характеристики деталей машин, их износостойкость и прочность. Выбором метода и режима механической обработки можно получить поверхностный слой с заданной величиной и знаком остаточных напряжений. Так, при точении закаленной стали 35ХГСА резцом с отрицательным передним углом 45° при скорости резания 30 м/мин, глубине резания 0,2-0,3 мм было получено повышение предела выносливости образцов на 40-50% и обнаружены остаточные сжимающие напряжения первого рода, доходящие до 600 МПа [25]. При шлифовании закаленной стали в поверхностном слое были обнаружены остаточные сжимающие напряжения до 600 МПа [26]. В некоторых случаях напряжения первого рода создаются намеренно в целях упрочнения. Например, для повышения усталостной прочности. Такой эффект получают наложением на поверхностный слой больших сжимаюп их напряжений путем обкатки поверхности закаленным роликом или обдувкой струей стальной дроби. Такой прием позволяет создать остаточные напряжения сжатия до 900-1000 МПа на глубине около 0,5 мм [25].  [c.42]

Время резания новым режущим инструментом от начала резания ло отказа называется периодом стойкости режущего инструмента. Стойкость токарных резцов составляет 30... 90 мин и зависит от свойств материалов инструмента и заготовки, режима резания, геометрии инструмента. Наибольшее влияние на стойкость оказывает скорость резания. Кривую изнашивания (рис. 22.16, г) можно разделить на три периода 0-А — период приработки, А-В — период нормального изнашивания, В-С — период катастрофического изнашивания. Чем выше скорость резания, тем быстрее начинается катастрофическое изнашивание, что вызвано возрастанием температуры в зоне резания. Между скоростью резания v и стойкостью Гпри заданном критерии затупления, неизменных подаче и глубине резания существует зависимость,  [c.463]

На размерный износ оказывают влияние материал режущего инструмента-конструкция, геометрия и состояние лезвия, режимы обработки, жесткость системы и другие факторы [12, 17]. Так, например, зависимость радиального износа от времени работы Т в мин, скорости резания V в м мин для обработки деталей из стали 45 резцом с пластинкой твердого сплава Т15К6 может быть выражена форм лой [17]  [c.75]

Образование нароста зависит от режима резания, геометрии резца и условий работы. Наибольшее влияние на образование нароста оказывает скорость резания V. При скоростях резания около 80 м мин [1,3 м/с] и более нарост не образуется и обработанная поверхность получается с наименьшей шероховатостью Тот же результат получается при очень низкпх скоростях резания порядка 1—2 м1мин [0,016—0,034 м/с] и меньше, при которых нарост также не образуется.  [c.324]

Неточность и износ инструментов. Изготовление инструмента осуществляется с высокой точностью, но режущий инструмент имеет значительный износ в процессе его работы. Обычно точность обработки связана с точностью изготовления режущего инструмента. Допуски на изготовление инструмента регламентируются ГОСТом. Существенно сказывается точность изготовления инструмента на точности обработки при работе мерным или профильным инструментом. Мерный инструмент копирует свои размеры непосредственно в теле детали (сверло, развертка, метчик и др.). Обработка профильным инструментом характерна тем, что его профиль переносится на обрабатываемую деталь (фасонные резцы, фрезы и др.). Имеются инструменты, которые являются одновременно мерными и фасонными, например протяжки, фасонные развертки и др. В процессе обработки деталей режущий инструмент изнашивается по режущим кромкам и постепенно изменяет свою форму и разкеры, но еще более значительные изменения претерпевает инструмент при заточках, особенно остроконечный инструмент. Инструмент изнашивается как по передней, так и по задней грани режущей кромки. Износ резца по передней грани существенно влияет на чистоту обработки и снижает прочность инструмента, но на точность обработки он влияет меньше, чем износ по задней грани. Износ инструмента характеризуется укорочением его в нормальном направлении к обрабатываемой поверхности, что ведет к изменению положения режущей кромки инструмента относительно базовой поверхности и изменению размера и формы обрабатываемой поверхности. Особое влияние на износ инструмента оказывает скорость резания. Подача и глубина резания в меньшей степени влияют на износ инструмента. Экспериментальные данные показывают, что подача больше влияет на износ резца, чем глубина резания. Кроме того, на износ инструмента влияет его конструкция, в частности большое влияние оказывает задний угол а. Увеличение угла а от 8 до 12° способствует повышению размерного износа инструмента. Износ резца по задней грани в натуральную величину переносится на обрабатываемую поверхность, снижая точность обработки. Если резец износится по задней грани на 0,1 мм, то диаметр обрабатываемой наружной цилиндрической поверхности увеличится на 0,2 мм. Если обработка ведется широколезвийным инструментом, то износ резца по задней грани влияет на размер и форму обрабатываемой поверхности. Износ резца пропорционален пути, пройденному лезвием инструмента в теле обрабатываемой детали, и зависит от материала инструмента, обрабатываемой детали, геометрии инстру-44  [c.44]


В этом случае могут быть две причины отрезной резец неправильна установлен, т. е. под углом 90° по отношению оси детали, или резец неправильно заточен. Если после правильной установки резца и его заточки получаемая поверхность остается прежней, тогда необходимо сменить резец, так как он имеет недостаточно прочную головку. В процессе проверки изготовляемых деталей на станке оказывается, что они не соответствуют длине, получаемой при первоначальной наладке. Это значит, что слабо зажата заготовка в патроне или плохо закреплены задние продольные упоры. В первом случае необходимо прошли( ювать кулачки патрона и промыть керосином, а во втором — произвести подналадку станка и закрепить упоры. При проверке диаметрального размера детали обнаружена овальность, значит есть большой зазор в подшипниках шпинделя, которые подлежат регулированию. Если поверхность резьбы после нарезания получается рваной, это значит, что диаметр под резьбу увеличен, либо велика скорость резания при нарезании резьбы или геометрия резьбонарезного инструмента не соответствует обрабатываемому материалу. В первом случае необходимо увеличить внутренний или уменьшить наружный диаметр, во втором — уменьшить скорость резания и в третьем — изменить геометрию резьбонарезного инструмента. Необходимо также помнить, что смазочно-охлаждающая жидкость оказывает существенное влияние на качество нарезаемой резьбы. При получении конусности возможно, что плашка в патроне установлена неправильно или произошел чрезмерный износ патрона для плашки. В первом случае плашку необходимо установить правильно, а во втором — заменить патрон. Если на обработанной поверхности детали появились следы вибрации, причиной этому может быть несколько факторов, а именно державка резца, закрепленная в револьверной головке, имеет большой вылет режущие инструменты слабо зажаты значительный вылет детали из патрона резец установлен ниже центра детали неправильный зажим заготовки и велики зазоры в подшипниках шпинделя оси револьверной головки или направляющих. Для устранения этих причин необходимо а) установить державку более жесткой конструкции б) закрепить надежно режущие инструменты  [c.119]

С уменьшением угла ф и увеличением г интенсивность вибраций возрастает (рис. 28, в и г), так как при этом ширина среза увеличивается, а толщина уменьшается. Частота вибрации зависит незначительно от режима резания и геометрии резца. Устранение вибрации достигается снижением вызывающих их (возмущающих) сил и повышением жесткости колеблющейся системы. Снижение возмущающих сил достигается повышением скорости резания и подачи, а также некоторым увеличением угла у (на 5—10 ), по сравнению с его оптимальным значением, и угла ф и уменьшением г. Повышение жесткости системы достигается рациональным креплением заготовки и инструмента, применением люнетов, повышением сечения державки резца и др. Для снижения колебаний применяют виброгасители, рассеивающие энергию колебаний. В то же время при правильном выборе направления и параметров вибрации (амплитуды и частоты) последние оказывают полезное влияние на процесс резания. Метод работы с использова-ниед вибрации называется вибрационным резанием.  [c.47]


Смотреть страницы где упоминается термин Влияние геометрии резца на скорость резания : [c.375]    [c.51]   
Смотреть главы в:

Резание металлов и инструмент  -> Влияние геометрии резца на скорость резания



ПОИСК



704 — Скорости резани

Влияние скорости

Геометрия

Резцы Геометрия

Резцы Скорость резания



© 2025 Mash-xxl.info Реклама на сайте