Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вихревой характер движения вязкой жидкости

ВИХРЕВОЙ ХАРАКТЕР ДВИЖЕНИЯ ВЯЗКОЙ ЖИДКОСТИ  [c.294]

Пространственному движению в пограничном слое обязательно соответствует некоторое вторичное течение в основном потоке, которое может быть найдено, если известно движение в пограничном слое. Для этого следует применить известное свойство вихревого движения жидкости (которым в данной задаче воспользовался Н. Е. Жуковский) движение вязкой жидкости в каждый момент времени можно рассматривать как движение идеальной жидкости при наличии известной завихренности в пограничном слое у твердых границ потока. При этом в отличие от описанных ранее вихревых моделей движения используется только одно условие сохранения вихря в каждый момент времени (вторая теоре 5а Гельмгольца) возникновение же и развитие вихрей объясняется трением жидкости в пограничном слое. В силу установленного пространственного характера пограничного слоя вихревые линии в нем не перпендикулярны ю скоростям внешнего потока, чему и соответствует вторичное течение, подобное указанному на рис. 148, б.  [c.443]


Ламинарный поток вязкой жидкости в трубе имеет вполне определенное распределение скоростей по сечению трубы (см. рис. 10.22). Можно показать, что такое распределение скоростей указывает на вихревой характер движения.  [c.297]

Максвелл описывает метод исследования этого явления, которого большею частью придерживались почти все дальнейшие исследователи. В этом методе он пользуется тем видом движения в вязкой жидкости, который можно считать тщательно разобранным, а именно — он предполагает существование так называемого пластинчатого движения, тогда как хорошо известно, что если будет превзойдена некоторая критическая скорость, этот вид движения становится неустойчивым и уступает место вихревому движению, некоторые детали которого до настоящего времени в достаточной мере не поддаются математической теории. Изучаемая вязкая жидкость помещается в пространство, образуемое двумя концентрическими цилиндрами с радиусами а и Ь (Ь у> а). Внешний цилиндр радиуса Ь остается неподвижным, а внутреннему цилиндру радиуса а придается равномерное вращение с угловой скоростью ш. Когда движение примет устойчивый характер, частица Р на расстоянии г от оси равномерно вращается по кругу со скоростью v.  [c.244]

Теория пограничного слоя показала нам, что при движении твёрдого тела в вязкой жидкости при больших числах Рейнольдса возможен при известных условиях отрыв от тела вихрей. Мы уже указывали на большое значение этого обстоятельства для обоснования тех схем движения тела в идеальной жидкости, в которых существенное значение имеет наличие вихрей или вихревых слоёв (как. например, схема вихревых дорожек Кармана). Однако во всех таких схемах имеется известная доля произвола. Чтобы избавиться от этого произвола, следовало бы, рассматривая движение какого-либо тела в жидкости, решить такую задачу проинтегрировать точные уравнения гидромеханики вязкой жидкости, а затем в полученных интегралах перейти к пределу, устремив к нулю. Ничто не заставляет нас ожидать, что при этом получится как раз движение тела в идеальной жидкости, так как мы многократно уже указывали на то, что различный характер движений в вязкой и идеальной жидкостях определяется не только и не столько различием вида уравнений, сколько различием граничных условий. Задача в таком виде была поставлена Осееном, который в своих исследованиях сделал и первые шаги к её разрешению, совершив предельный переход для упрощённой системы уравнений движения вязкой жидкости.  [c.632]


Применение полученных в работе уравнений движения вязкой жидкости иллюстррфуется на примерах известных задач (например, течения Пуазейля), решения которых были найдены ранее. Одновременно рассматривается относительно новая задача расчета вязкого течения -торцевое течение на безграничной плоскости. Такое течение является вторичным и возникает при торможении вихревой трубки при контакте ее торца с плоскостью. В предположении о сплошном характере этого течения такая задача имеет известное точное решение для малых чисел Рейнольдса [8, 9].  [c.8]

Чтобы выяснить особегпюсти обтекания тела вязкой жидкостью, вернемся к уже рассмотренному случаю обтекания цилиндра невязкой жидкостью и посмотрим, какие изменения в эту картину должны внести силы вязкости. В набегающем потоке (рис. 326) картина будет такой же, как и при обтекании цилиндра невязкой жидкостью, т. е. аналогичная изображенной па рис, 324. Однако при дальнейшем течении жидкости от точки А к точкам А и А", вследствие действия сил вязкости в пограничном слое, частицы жидкости, идущие из области АА и АА", теряют скорость и приходят в области jB и С с меньшими скоростями, чем в случае отсутствия сил вязкости. Потеря скорости на участках АА и А А" приводит к тому, что поток, обтекающий цилиндр, не может проникнуть в области D D и D"D. В результате вблизй точек D и D" происходит отрыв потока от поверхности цилиндра. В этом и заключается существенное изменение картины обтекания цилиндра, вносимое силами вязкости. В отличие от невязкой жидкости, полное обтекание цилиндра вязкой жидкостью оказывается невозможным. Позади цилиндра образуется область, в которую потоки, обтекающие цилиндр, не проникают и в которой движение жидкостей носит совсем особый характер —возникают вихревые  [c.547]

Известно, что решения уравнений Эйлера обладают свойством обратимости. Смена направления скорости на противополонгное (вообще говоря, и знака времени, по здесь рассматриваются стационарные течения) не выводит нас из класса решений. Однако граничные условия в случае вихревых течений уже не обладают такой симметрией. Для однозначной разрешимости обычно па участках втекания требуется дополнительно к нормальной компоненте скорости задать завихренность [147] или касательпые компоненты скорости [63]. Для обращения движения в такой постановке ужо необходимо ие только изменить знак скорости, но и переформулировать краевую задачу. С формально математической точки зрения дополнительные граничные условия могут быть поставлены па участках как втекания, так и вытекания. Предпочтение первых основывается па соображениях физического характера и является по сути дополнительным постулатом в рамках теории идеальной жидкости. Приведенный пример показывает, что этот постулат может рассматриваться как следствие предельного перехода в течении вязкой жидкости. Хотя в пределе вязкость равна пулю ее воздействие проявляется в раз,личии краевых условий на участках втекания и вытекания.  [c.116]

Вязкий стоксовский слой возникает при вибрациях не только вблизи твердых поверхностей, но и около свободной поверхности жидкости и поверхности раздела несмешивающихся жидкостей. Генерация средних течений вблизи свободной поверхности изучалась Лонге— Хиггинсом [4], а вблизи поверхности раздела сред — Дором [5]. Ими рассматривались малоамплитудные волны на свободной поверхности жидкости (или соответственно на поверхности раздела жидкостей), при этом анализ течений в стоксовских слоях показал, что и в этом случае они являются местом генерации средних течений вихревого характера, распространяющихся за пределы скин-слоев. Авторами работ [4, 5] получены уравнения и граничные условия, определяющие указанные средние течения. Выяснено, что генерация средних течений вблизи свободной поверхности или поверхности раздела сред имеет некоторые особенности по сравнению с рассмотренной Шлихтингом в [1] генерацией среднего течения вблизи поверхности вибрирующего твердого тела. Осреднение пульсационных движений в стоксовском слое вблизи твердой поверхности приводит к граничному условию, определяющему касательную к поверхности тела компоненту скорости среднего течения. В ситуациях, рассмотренных Лонге-Хиггинсом и Дором, генерация среднего течения проявляется в эффективном дисбалансе касательных напряжений. Механизм Шлихтинга в этих  [c.192]


Технически Р. м. осуш ествляется путем придания частицам материала определенной скорости движения внутри сосуда. Важным условием при этом является то, чтобы скорости частиц в смежных слоях возможно больше различались по своей величине. Создание мош ных правильных потоков постоянного направления (циркуляция)—мало продуктивный способ Р. м. оно допустимо лишь при больших скоростях, когда вследствие трения о стенки внутри такого потока возникают интенсивные вихревые движения. Обычно стремятся придать движению частиц б. или м. беспорядочный характер—при по-мош и турбулентных потоков,встречных и пе-ресекаюш ихся струй или ударов потока о неподвижное препятствие. Для этой цели применяются чаш е всего враш аюш иеся м е-ш а л к и различных типов или иные механич. приспособления. Эффективность таких устройств в огромной степени зависит от их конструктивного оформления и от свойств подвергаемых размешиванию объектов этим объясняется многочисленность и разнообразие суш ествуюш их конструкций мешалок, причем каждая из них применима лишь к определенной категории материалов и определенному типу технологич. процессов. Объектами размешивания материалов могут быть сыпучие материалы вязкие жидкости п массы тестообразной или мазеобразной консистенции однородные жидкости неоднородные системы с жидкой дисперсионной средой, где дксперсная фаза может быть жидкой, твердой или газообразной, и наконец газы.  [c.446]

Исследовался важный вопрос об оптимальной высоте падения капель, для которой четко сформированное вихревое кольцо проходит наибольший путь. Установлен периодический характер зависимости глубины прохождения кольца от высоты падения капли, причем расстояние между соседними максимумами высоты хорошо коррелировали с пересчитанным на длину периодом собственных колебаний капли относительно сферической формы. Причины образования вихревых колец при падении капли на свободную поверхность жидкости объяснены следующим образом [239). Движение окружающей каплю жидкости вначале очень схоже с движением жидкости вокруг твердой сферы того же размера. Когда сфера движется, то касательная скорость ее отличается от касательной скорости сферы, поскольку жидкость обтекает последнюю. Если сфера жидкая, как и среда, в которой она движется, то не будет резкого разрыва в скорости, а только очень быстрое ее изменение, т.е. будет происходить конечное изменение скорости на исчезающе малом расстоянии. Такое изменение эквивалентно вихревому слою, покрывающему сферу, причем вихревые линии являются горизонтальными окружностями, и если жидкость вязкая, то завихренность в слое диффундирует внутрь и вовне. По мере паденйя капли сопротивление делает ее более плоской, пока она не станет дискообразной. К этому времени, однако, она будет наполнена вихревым движением, и поскольку дискообразная форма имеет неустойчивую конфигурацию завихренности, диск должен превратиться в устойчивую конфигурацию в виде яркого кольца. Наиболее важным свойством жидкости является ее вязкость. Когда капля станет дискообразной, то внутри нее должно быть достаточно вихревого движения, чтобы привести его к превращению в кольцо. Если вязкость слишком мала, то вихревое движение не будет иметь достаточно времени д..я удаления от поверхности капли, пока она дискообразна, и, таким образом, капля будет продолжать сплющиваться и превратится в тонкий слой с полосками вихревого движения вместо превращения в кольцо если вязкость слишком большая, то вихревое движение продиссипирует прежде, чем капля станет дискообразной.  [c.232]


Смотреть страницы где упоминается термин Вихревой характер движения вязкой жидкости : [c.116]   
Смотреть главы в:

Курс общей физики Механика  -> Вихревой характер движения вязкой жидкости



ПОИСК



Вихревое движение

Вихревое движение вязкой жидкости

Вихревые усы

Вязкая жидкость в движении

Движение Движение вихревое

Движение вязкой жидкости

Движение жидкости вихревое

Жидкости характер движения

Жидкость вязкая

Жидкость вязкая вихревое движение

Характер движения



© 2025 Mash-xxl.info Реклама на сайте