Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кручение стержней переменного поперечного сечения

Кручение стержней переменного поперечного сечения  [c.573]

Для определения экспериментальных значений функции пластичности воспользуемся приведенными на рис. 1.10 а опытными данными по переменному кручению стержня круглого поперечного сечения за пределами упругости в условиях комнатной температуры, полученными Гусенковым и Москвитиным [97]. Здесь  [c.66]

В этой же главе обсуждаются и более сложные случаи — свободное кручение призматических стержней произвольного поперечного сечения в упругой и упруго-пластической стадиях работы материала, а также кручение круглых цилиндрических стержней в случае переменного вдоль оси крутящего момента и кручение тел вращения.  [c.11]


Расчетную модель опорной конструкции можно представить в виде двух продольных балок или плоских рам переменного поперечного сечения, связанных поперечными связями в виде балок или колец (рис. 1). В частности, такими связями служат корпуса механизмов, установленные на раме. Рама соединяется с фундаментом амортизаторами, каждый из которых в расчете рассматривается как сосредоточенный упруго-вязкий элемент. Балки рамы могут совершать вертикальные и крутильные колебания. Ротор и балки опорной конструкции разбиваются на участки. Расчетная модель участка представляется стержнем постоянного поперечного сечения с распределенными параметрами. К концу стержня присоединяется жестко сосредоточенная масса т -, обладающая моментами инерции к повороту и кручению ll, I]. Масса соединяется упруго с абсолютно жестким фундаментом и сосредоточенной массой т , обладающей моментами инерции /ф, (рис. 2). Упругие связи характеризуются жесткостями Св, Сф, v (/с = 1, 2) в вертикальном, поворотном и крутильном направлениях (на рис. 2 Z = Ь, г з, 7). Демпфирование в системе учитывается комплексными модулями упругости материала стержня и комплексными жесткостями амортизаторов.  [c.6]

Если стержень не является призматическим, т. е. если его профиль меняется по длине, то в поперечных сечениях при растяжении и изгибе возникнут касательные напряжения, и сечения перестанут быть плоскими. В результате нормальные напряжения при растяжении будут распределяться неравномерно, а при изгибе закон их распределения отклонится от известного линейного закона. Точно так же при кручении стержня переменного профиля касательные напряжения в поперечных сечениях будут распределяться по иным законам, чем в призматическом стержне. Во всех случаях степень отклонения от закономерностей, установленных для призматического стержня, тем заметнее, чем резче меняется профиль стержня по его длине.  [c.225]

Если плоскость действия сил, к которым сводится нагрузка на балку, не проходит через линию, соединяющую центры изгиба сечений, то балка подвергается не только изгибу, но и кручению парами сил, моменты которых, вообще говоря, меняются по ее длине. Вследствие этого в сечениях балки появляются дополнительные касательные напряжения. С другой стороны, как известно, кручение стержней любого сечения, кроме круглого, сопровождается искривлением сечений. Ввиду переменности крутящего момента по длине балки, а также ввиду препятствий искривлению концевых сечений при их заделке, искривления различных сечений оказываются различными. Мы встречаемся с неравномерным или стесненным кручением, называемым так в отличие от равномерного или свободного кручения, при котором крутящие моменты постоянны по длине стержня и поперечные сечения могут свободно искривляться.  [c.293]


Уравнение крутильных колебаний. Рассмотрим лопатку переменного сечения (см. рис. 73). Полагая, что центры кручения поперечных сечений лопатки образуют прямую линию, направим ось z вдоль этой прямой. Начало координат поместим в центре кручения корневого сечения, а оси хну проведем, как и ранее, в осевом и тангенциальном направлениях. Для прямого стержня переменного сечения крутящий момент относительно оси z, действующий в сечении на расстоянии z от корневого сечения, выражается через угол поворота следующим образом  [c.130]

Обратимся теперь к вопросу о вторичных касательных напряжениях при стесненном кручении. Эти напряжения возникают вследствие переменности нормальных напряжений 0 по длине стержня. Для определения касательных напряжений стесненного кручения напишем уравнение равновесия части стержня, выделенной двумя поперечными сечениями, отстоящими на с1г одно от другого, и продольным сечением СО, взятым на некотором конечном расстоянии от края (см. рис. 1.25, грань АВ совпадает с краем).  [c.36]

Кручение — это такой вид деформирования стержней, при котором в поперечном сечении возникает только крутящий момент. Кручение реализуется только для прямолинейных стержней (рис. 4.33) (поперечное сечение стержня может быть переменным по дли-  [c.273]

Использованный в этом и предыдущем параграфах прием произвольного выбора гармонической функции ф и выяснения затем, для какого контура поперечного сечения стержня функция дает решение задачи о кручении, на первый взгляд представляется мало эффективным, поскольку исследователь лишен при этом возможности распоряжаться по своему усмотрению выбором контура поперечного сечения. Однако данный прием весьма полезен, поскольку позволяет весьма просто и быстро обследовать большой круг задач теории кручения и получить сведения, относящиеся к достаточно широкому классу поперечных сечений. Этот прием был использован еще Сен-Венаном, который последовательно рассмотрел гармонические функции, являющиеся вещественными или мнимыми частями аналитических функций комплексного переменного z , z , z, z , и показал, что уже этот простейший класс функций позволяет решить задачу кручения для обширного круга контуров поперечного сечения. В частности, контур, рассмотренный в данном параграфе, принадлежит к семейству контуров, которые могут быть исследованы, исходя из аналитической функции z - k.  [c.262]

Если депланации всех поперечных сечений одинаковы по длине стержня, то кручение называется свободным. При переменных депланациях его называют стесненным.  [c.291]

Кручение круглого стержня переменного диаметра. Рассмотрим вопрос о предельном значении момента при скручивании круглого стержня переменного диаметра (рис. 205). Введем цилиндрическую систему координат г, ф, г, направив ось г по оси стержня. Как и при упругом кручении, можно считать, что поперечные сечения стержня остаются плоскими, радиусы же искривляются. Следовательно, составляющие скорости равны  [c.305]

При рассмотрении кручения стержней переменных поперечных сечений см. пп. 46 и 47) указывалось, что входящие углы или другие резкие изменения в контуре попфечного сечения вызыйак т фль-шую концентрацию напряжений. Продольные отверстия производят подобный эффект.  [c.258]

В последующих же главах во втором томе, в частности в главах XI, XII, XIII, посвященных деформации стержней, аппарат теории сплошных сред (главным образом теория упругости) играет уже чисто служебную роль, как рабочий инструмент, с одной стороны, для оценки гипотез, используемых в элементарной теории, и границ применимости последней, а с другой стороны, для решения тех задач, которые не могут быть решены средствами элементарной теории. К числу последних относятся кручение призматических стержней некруглого поперечного сечения, свободное кручение валов переменного вдоль оси диаметра, определение полного касательного напряжения при поперечном изгибе балки, определение положения центра изгиба в поперечном сечении массивных стержней и др.  [c.13]


В первом разделе рассмотрены эпюры внутренних силовых факторов и растяжение-сжатие пряиолинейного стержня, во -втором - теория напряженного состояния, включая гипотезы прочности, кручение круглых ваюв. геометрические характеристики поперечных сечений в третьем - плоский прямой изгиб в четвертом -статически неопределимые системы и сложное сопротивление в пятом - устойчивость деформируемых систем, динамическое нагру-Ж ение, тонкостенные сосуды в шестом - плоские кривые стержни, толстостенные трубы и переменные напряжения.  [c.39]

До сих пор мы рассматривали лишь стержни цилиндрической или призматической формы. В большинстве случаев с такими стержнями обычно и имеют дело, но все же не всегда. В стержнях с резким изменением поперечного сечения часто во время работы машины в оггреде-ленных местах происходят поломки, указывающие на существование там значительной концентрации напряжений. Поэтому нам необходимо заняться вопросом, какие напряжения и деформации получаются вследствие кручения в стержне переменного сечения.  [c.111]

В. В. Москвитин (1951 — 1965), обобщив положения Г. Мазинга ж используя теорию малых упруго-пластических деформаций для случая тЕовторного нагружения, доказал ряд теорем относительно переменных нагружений, вторичных пластических деформаций и предельных состояний. На основе этих теорем оказалось возможным использовать конечные соотношения между напряжениями и деформациями для решения соответствующих задач. Эти соотношения справедливы при нагружениях, близких к простому. В работах В. В. Москвитина показана таюке возможность применения разработанной им теории для случая сложного нагружения, когда главные напряжения при циклическом нагружении меняют знак. Теория малых упруго-пластических деформаций при циклическом нагружении была использована В. В. Москвитиным и В. Е. Воронковым (1966) для решения ряда конкретных задач (циклический изгиб бруса и пластин, повторное кручение стержней кругового и овального поперечного сечения, повторное нагружение внутренним давлением толстостенного цилиндра и шара и др.).  [c.411]

ШИ относительных перемещений точек при деформации можно пренебречь. Остальные гипотезы, к-рыми пользуется С. м., здесь устранены первоначально в развитии теории упругости они или подтверждаются вполне, или частью, с известным приближением, или отвергаются в связи с анализом отдельных деформаций. Элементарные теории растяжения, кручения круглых брусков, чистого изгиба вполне согласуются с теорией упругости. Изгиб в присутствии срезывающих сил, как оказывается, подчиняется закону прямой линии гипотеза Навье), но не закону плоскости (гипотеза Бернулли). Касательные напряжения при изгибе распределяются по закону параболы, но только в тех сечениях, которые имеют незначительную толщину при большой высоте (узкие прямоугольники). В других сечениях закон распределения касательных напряжений совершенно иной. Для балок переменного сечения, к к-рым в элементарной теории прилагают закон прямой линии и параболы, теория -упругости дает другие решения в этих решениях значения напряжений и деформаций гораздо выше, чем по элементарной теории следует. Общепринятый способ расчета пластин по Баху как обыкновенных балок не оправдывается теорией упругости. Ф-лы С. м. для кручения некруглых стержней не соответствуют таковым в теории упругости. Теория изгиба кривых стержней решительно не совпадает с элементарной теорией Баха-Баумана, но результаты расчета по строгой теории и на основании гипотезы плоских сечений достаточно близки. Поставлена и разрешена для ряда случаев задача о распределении местных напряжений (в местах приложения нагрузки или изменения сечения), к-рая совершенно недоступна теории С. м. Вопрос об устойчивости деформированного состояния, элементарную форму которого представляет в С.м. продольный изгиб, получил в теории упругости общее решение Бриана (Bryan), Тимошенко и Динника. Помимо многочисленных форм устойчивости стержня, сжатого сосредоточенной силой, изучены также явления устойчивости стержней переменного сечения под действием равномерно распределенных сил и другие явления устойчивости балок при изгибе, равномерно сжатой трубы, кольца, оболочек, длинного стержня при скручивании и пр. Теория упругого удара— долевого, поперечного—занимает большое место в теории упругости и включает все большее и большее чис-чо технически важных случаев. Теория колебаний получила настолько прочное положение в теории упругости и в практи-тсе, что методы расчета на ко.чебания проникают область С. м., конечно в элементарном виде. Изучены распространение волны в неограниченной упругой среде (решение Пуассона и Кирхгофа), движение волны по поверхности изотропной среды (решение Релея), волны в всесторонне ограниченных упругих системах с одной, конечно многими и бесконечно многими степенями свободы. В связи с этим находятся решения, относящиеся к колебаниям струн, мембран и оболочек, различной формы стержней, пружин и пластин.  [c.208]

Применение. Повышение напряжений может быть в стержнях, работающих на кручение вследствие долевых отверстий, канавок для шпонок и поперечных желобков (фиг. 169—170). В последнем случае необходимо вычислить касательное напряжение цилиндра диаметром Гик нему относить повышение касательного напряжения. В случае валов с переменным сечением повышение напряжения не особенно значите1ьно.  [c.192]



Смотреть страницы где упоминается термин Кручение стержней переменного поперечного сечения : [c.396]    [c.318]   
Смотреть главы в:

Прочность и колебания элементов конструкций  -> Кручение стержней переменного поперечного сечения



ПОИСК



В В по поперечному сечению стержня

Вал переменного сечения

Кручение стержней

Кручение стержней переменного сечения

Поперечное сечение

Сечения поперечные 260 — Оси при кручении

Стержень переменного сечения

Стержни сечений



© 2025 Mash-xxl.info Реклама на сайте