Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические свойства, определяемые при статических нагрузках

Свойства при статических нагрузках. Механические свойства ковкого чугуна определяются структурой металлической основы, количеством и степенью компактности включений графита. Так как модуль упругости зависит в большей степени от количества графита, а твердость — от структуры металлической основы, то предел прочности при растяжении является функцией модуля упругости и твердости и может быть оценен по эмпирической формуле  [c.119]


Механические свойства определяют способность металлов сопротивляться воздействию внешних сил (нагрузок). Они зависят от химического состава металлов, их структуры, способа технологической обработки иг других факторов. Зная механические свойства, можно судить о поведении металла при обработке и в процессе работы конструкций и механизмов. По характеру действия на металл различают три вида нагрузок статические — действующие постоянно или медленно возрастающие динамические — действующие мгновенно, принимающие характер удара циклические, или знакопеременные, изменяющиеся или по величине, или по направлению, или одновременно и по величине, и по направлению. В результате воздействия на металл нагрузок в нем возникают деформации растяжение, изгиб, сжатие, кручение, срез. Нагрузки могут вызвать разрушение металла. Чтобы не допустить разрушения и образования остаточных  [c.29]

В результате исследований малоцикловой усталости жаропрочных и коррозионно-стойких сталей при неизотермическом нагружении в диапазоне переменных температур 100. .. 700 °С показано, что предельное состояние определяется параметрами термомеханического нагружения (максимальной температурой, формой циклов нагрузки и температуры, длительностью выдержки при экстремальных значениях нагрузки и температуры), а также механическими свойствами применяемых материалов (пределами статической и длительной прочности, деформационной способностью) в рассматриваемом диапазоне температур.  [c.28]

Механические свойства конструкционных материалов определяют экспериментально специальными механическими испытаниями образцов, причем вид механического испытания назначают в зависимости от условий нагружения детали, подлежащей изготовлению из данного конструкционного материала. Механические свойства стали определяют при статических, динамических и циклических режимах приложения нагрузок, а также при пониженных, нормальных или повышенных температурах. Испытуемые образцы можно нагружать по различным схемам (одноосное растяжение — сжатие, чистый или поперечный изгиб, кручение). В за-виси.мости от времени воздействия нагрузки на испытуемый образец испытания могут быть кратковременными или длительными. Почти все методы механических испытаний стали (за исключением метода испытания твердости) являются разрушающими, что исключает возможность стопроцентного контроля механических свойств деталей машин или элементов конструкций и обусловливает весьма высокие требования к точности механических испытаний образцов (или контрольных деталей).  [c.454]


Механические свойства металлов определяются специальными механическими испытаниями, которые подразделяются на статические, динамические и повторно-переменные способы приложения нагрузки.  [c.408]

Механические испытания разделяют на три вида статические, когда нагрузка на испытываемый образец возрастает плавно динамические, когда нагрузка прилагается мгновенно, ударом и усталостные, когда к испытываемому образцу прилагают переменные по величине или по направлению усилия (циклическая нагрузка). Испытания производят на стандартных образцах, которые вырезают непосредственно из контролируемой сварной конструкции или из специально сваренных в таких же условиях контрольных образцов. Виды испытаний, методика их проведения, форма образцов определены государственными стандартами. В результате испытаний определяют предел прочности, относительное удлинение, угол загиба, ударную вязкость, твердость, усталостную прочность и другие показатели механических свойств металла сварного соединения. Некоторые ответственные сварные конструкции испытывают на конструктивную прочность, прилагая к ним нагрузки, превышающие эксплуатационные, и определяя, при какой нагрузке конструкция разрушается. Например, сварные емкости разрушают внутренним давлением жидкости - производят гидроиспытания. По результатам таких испытаний одного-двух изделий судят о необходимости доработки конструкции или технологий ее изготовления.  [c.36]

Кроме того, в рекомендациях, представленных ниже, будут описываться материалы с высокими прочностными характеристиками несущей способностью, пределом прочности в плоскости образца. Одновременно будет определяться распределение напряжений в концентраторе — отверстии для механических соединений. Конструкции соединений должны быть подвергнуты испытаниям при статических нагрузках, определены их усталостные свойства и влияние окружающей среды. Разрушение композита в резуль-  [c.382]

Статические испытания предусматривают медленное и плавное нарастание нагрузки, прилагаемой к испытываемому образцу. По способу приложения нагрузок различают статические испытания на растяжение, сжатие, изгиб, кручение, сдвиг или срез. Наиболее распространены испытания на растяжение (ГОСТ 1497-84), которые дают возможность определить несколько важных показателей механических свойств.  [c.49]

Иными словами, между актом приложения нагрузки и моментом наступления в деформированном материале равновесного состояния проходит достаточно большой отрезок времени. Процессы установления равновесия, временной ход которых определяется перегруппировкой частиц под действием теплового движения, являются релаксационными. Релаксационная природа — основная особенность высокоэластической деформации резины, определяющая ее основные физико-механические свойства. Вследствие релаксационных процессов, протекающих в резине при деформации, проявляются явления ползучести и релаксации напряжения, уровень которых в свою очередь определяет долговечность материала. Проявление того или иного эффекта зависит от режима деформации резины. В зависимости от частоты деформирования различают статический и динамический режимы нагружения, а в зависимости от способа деформирования — режимы постоянной нагрузки или постоянной деформации.  [c.25]

Если конструкции работают в условиях повышенных температур, то время становится одним из факторов, обусловливающих образование предельных состояний. Это является следствием постепенного изменения механических свойств материала и перераспределения деформаций и напряжений в детали в результате ползучести, В деталях, находящихся под длительным статическим нагружением, предельное состояние определяется той стадией пребывания под нагрузкой, когда в результате перераспределения и накопления деформаций в зонах наибольшей  [c.6]


Способность материала сопротивляться воздействию на него различных нагрузок (статических, динамических, знакопеременных и др.) оценивается совокупностью механических свойств. Эти свойства определяются в результате соответствующих испытаний материала или специально изготовленных из него образцов по стандартным методикам. Чаще всего проводят статические испытания на растяжение, сжатие, изгиб, твердость и динамические на ударную вязкость и усталость при переменных нагрузках.  [c.193]

Для установления технологичности сталей в зависимости от содержания различных легирующих элементов были проведены также горячие статические испытания на растяжение. При этом определяли прочностные и пластические свойства, а для некоторых плавок сопротивление металла ударным нагрузкам, число оборотов при кручении, а также механические свойства при низких температурах [122].  [c.164]

Обычно нормируемая предельная величина дополнительной усадки при Температурах от 1350 до 1600° С лежит в пределах десятых долей процента. Рост нормируется лишь для динасовых огнеупоров. Температура деформации под нагрузкой огнеупоров имеет существенное значение в тех случаях, когда срок службы длителен, а статические нагрузки на огнеупор значительны. Эта температура измеряется при нагрузке 2 кгс/см для различных степеней деформации. За точку начала принимается сжатие образца на 0,6%. Термическая стойкость огнеупорных изделий определяется по стандарту путем одностороннего нагрева образцов при 1300° С и охлаждения в воде, причем норма устанавливается по количеству теплосмен, выдерживаемых образцом до потери веса 20%. Приводимые в справочнике величины относятся именно к этому методу определения термической стойкости, кроме специально оговоренных случаев. Огнеупоры в службе большей частью испытывают температурные колебания, нередко довольно резкие, поэтому термической стойкости при выборе огнеупора следует придавать большое значение. Имеется еще ряд технических характеристик огнеупорных изделий, не нормируемых действующими ГОСТами и ТУ шлакоустойчивость, теплопроводность, теплоемкость, ранее упоминавшаяся газопроницаемость и некоторые другие. Определение этих показателей выполняется институтами и заводскими лабораториями в ходе исследовательских работ или по отдельным заданиям. Кроме химических и физико-механических показателей свойств огнеупоров, для изделий устанавливаются допустимые предельные отклонения размеров, дефекты внешнего вида и структуры. В связи с выходом в 1975 г. официального сборника стандартов Огнеупоры и огнеупорные изделия в настоящем справочнике помещены только основные сведения из ГОСТов без данных о рме и размерах, которые при необходимости следует брать из действующих стандартов.  [c.13]

Сопротивляемость стали разрушению от действия внешней статической нагрузки определяется ее механическими свойствами пределом прочности Ств, пределом текучести <Тт, относительным удлинением (сужением) 6. Предел текучести — важный показатель пластичности материала. Пластичность оценивают отношением предела текучести к пределу прочности <Тт./ав) чем оно меньше, тем пластичнее материал. Для малоуглеродистых сталей обычного качества (например, СтЗ) Тт/сТв 0,6, для низколегированных — <Тт/(Тв > 0,7. Снижение пластичности вызывает повышенную чувствительность низколегированных сталей к различным концентраторам напряжений, поэтому использование при ремонте металлоконструкций сталей повышенной прочности должно сочетаться с конструктивно-технологическими методами снижения концентрации напряжений.  [c.61]

Расчет сооружений на динамическую нагрузку гораздо сложнее, чем на статическую. Сложность расчета определяется не только методами определения напряжений и перемещений, но и методами определения механических свойств материалов. Многие материалы, которые при статическом нагружении оказывались пластичными, при ударе работают как хрупкие. При действии многократно повторяющейся переменной нагрузки прочность материалов резко снижается.  [c.286]

Способность металла сопротивляться воздействию внешних сил характеризуется механическими свойствами. Поэтому при выборе материала для изготовления деталей машин необходимо прежде всего учитывать его механические свойства прочность, упругость, пластичность, ударную вязкость, твердость и выносливость. Эти свойства определяют по результатам механических испытаний, при которых металлы подвергают воздействию внешних сия нагрузок). Внешние силы могут быть статическими, динамическими или циклическими (повторно-переменными). Нагрузка вызывает в твердом теле напряжение и деформацию.  [c.16]

Требования к полупроводниковому материалу определяются в первую очередь прибором, в котором полупроводник будет применяться. Это связано с тем, что полупроводниковые приборы используют различные явления, связанные с чувствительностью полупроводников к внешним воздействиям, а также поверхностные свойства полупроводников (контакт полупроводник-металл, полупроводник-диэлектрик и их сочетания). Важнейшую роль в требованиях к полупроводниковому материалу играет надежность работы прибора. Это вызвано тем, что, во-первых, с развитием микро- и наноэлектроники усложняется структура приборов, состоящих из огромного числа элементов. Причем каждый такой прибор может во множестве использоваться в оборудовании конкретного назначения. Во-вторых, электронное оборудование широко используется в экстремальных условиях (атомная промышленность, космос, авиация и т.п.), когда на прибор воздействуют низкие или высокие температуры и давления, ионизирующие излучения, сильные электромагнитные поля, большие статические и механические нагрузки, агрессивные среды и микроорганизмы. Применение же специальных средств защиты не всегда возможно из-за экономических, технических или энергетических условий и обстоятельств.  [c.648]


Механические испытания имеют своей целью определить-прочностные свойства материалов, т. е. их способность выдерживать воздействие внешних механических нагрузок без недопустимых изменений первоначальных размеров и формы. В некоторых случаях при механических испытаниях определяют разрушающую нагрузку и дофрмацию материала после его разрушения. По характеру приложения нагрузки механические испытания делятся на статические, когда нагрузка плавно возрастает с обу-  [c.422]

Механические свойства зависят от рода материала, его обработки, 1В иутренн го строения, формы изделия и ряда других факторов. Механические свойства определяют, испытывая предварительно изготовленные на специальных машинах образцы. ПроРл -Д имые испытания могут быть статическими, когда прилагаемая нагрузка возрастает медлачно и плавно динамическими — при воздействии внешней силы с большой скоростью (удар) повторно-переменными, если нагрузка по ходу испытаний изменяется по величине и направлению.  [c.47]

Литые детали, не воспринимающие больших нагрузок размеры деталей определяются по конструктивным или технологическим соображениям Литые детали, воспринимающрю статические или динамические нагрузки. В таких отливках контролируют химический состав, размеры, механические свойства и внешний вид  [c.39]

Одной из наиболее информативных характеристик трещино-стойкости нелинейной механики разрушения является коэффициент интенсивности деформаций в упругопластической области К1е [1, 65-67], применимый в условиях статического и циклического нагружения. Его использование в инженерных расчетах [1, 68-71] позволяет определять запасы прочности и долговечности по предельным нагрузкам, локальным упругоплаетическим деформациям, размерам трещин и числам циклов нагружения. При этом основа расчетов — традиционные характеристики механических свойств (пределы текучести и прочности, относительные удлинение и поперечное сужение, показатель деформационного упрочнения и др.). Учитывается также влияние уровня номинальных напряжений, изменение параметров деформационного упрочнения, степени объемности напряженного состояния и предельной пластичности материала.  [c.53]

Предложенные Н. А. Махутовым деформационные критерии применимы в условиях как статического, так и малоциклового нагружения. Их использование позволяет определять запасы прочности и долговечности по предельным нагрузкам, локальным упру го пластическим деформациям, коэффициентам интенсивности напряжений и деформаций (при квазиупругом и упругопластическом пойедении), числам циклов на стадиях зарождения и развития трещин и т. п. Преимущество использования деформационных характеристик критериев локального разрушения взамен силовых связано с возможностью использования таких традиционных механических свойств, как временное сопротивление, предел текучести, удлинение, поперечное сужение, показа-  [c.24]

Наиболее опасным деградационным процессом является охрупчивание материала, приводящее к существенному изменению характеристик трещиностойкости и смещению хрупкого разрущения в область положительных температур. Переходу металла в хрупкое состояние способствует наличие концентратора напряжений резкое изменение формы или сечения элемента конструкции, поверхностные риски, микротрещины и другие дефекты. Особенно это актуально для емкостного оборудования и трубопроводов, имеющих больщие линейные размеры, так как в таком оборудовании возможно накопление под нагрузкой огромной упругой энергии, которая, стремясь разрядиться, разрывает конструкцию по дефекту (концентратору напряжений). Разрушение происходит с большой скоростью (одномоментно), при этом на магистральных трубопроводах отмечались разрывы, достигающие 1000 м и более. Поэтому характеристики трещиностойкости определяют на образцах с надрезом или начальной трещиной, или концентратором соответствующей формы в результате динамических или статистических испытаний. Из всех механических свойств наиболее чувствительными к охрупчиванию оказались ударная вязкость и статическая вязкость разрушения.  [c.195]

Каждое из указанных испытаний не определяет всех механических свойств металла и не отражает полностью его поведения в готовых деталях различного назначения, а лишь обнаруживает те его свойства, которые характерны для данного напряженного состояния (для данного вида иснытания). Различие в прочности, пластичности и других механических свойствах образцов и готовых деталей или конструкций объясняется следующим 1) напряженное состояние, создаваемое при каком-либо механическом испытании, не воспроизводит того сложного напряженного состояния, которое в действительности возникает в условиях эксплуатации. Готовая деталь (или конструкция) часто подвергается совместному воздействию различных по характеру нагрузок. Так, например, коленчатый вал двигателя воспринимает не только изгибающие нагрузки, но работает в условиях кручения и повторно-переменных статических и динамических нагрузок 2) надрезы, например в виде галтелей, шпоночных канавок и т. д., имеющиеся в готовых деталях, изменяют распределение напряжений по сечению и объему и создают концентрацию напряжений. Поэтому многие механические свойства, особенно вязкость и пластичность, в готовой детали сложной формы с резкими переходами по сечению могут быть по величине существенно отличными и ниже значений этих же свойств, определенных при испытании гладкого образца (если даже условия нагружения детали и образца одинаковы) 3) в деталях, имеющих большие размеры, чем испытуемый образец, встречается относительно больше пороков металла (ликвация, поры, микротрещины), понижающих механические свойства.  [c.116]

МЕХАПИЧЕСКИЕ ИСПЫТАНИЯ МЕТАЛЛОВ — ИСМ1.1Т 1ИИЯ, иозиоликицие определят механические свойства металлов. По характеру приложения нагрузки различают М. и. м. статические, динамические, а также испытания па усталость.  [c.79]

Механические свойства Д., характеризующие ее способность сопротивляться механич. воздействиям, м б. под[1азделены на 1) крепость, или способность сопротивляться разрушению от действия механических усилий -) упругость, или способность принимать первоначальную форму и размеры после прекращения действия сил 3) ж е с т к о с т ь, или способность сопротивляться деформированию 4) твердость, или способность сопротивляться внедрению другого твердог о тела (для большинства методов ее определения). Свойства, определяющие низкую степень перечисленных основны.х свойств, или иначе обратные и.м, м. б. соответственно названы слабость, пластичность, податлив о с т ь и мягкость. Первые три свойства могут проявляться при разных видах напряжений, из которых простыми видами являются растяжение, сжатие и сдвиг (скалывание) изгиб и кручение заключают в себе у ке нек-рый комплекс простых видов напрягкений. По характеру действия сил различают нагрузки статические при плавном медленном действии сил и дина м и ч е с к и е при действии сил со значительной ско])остью в момент соприкосновения с тч лом (удар) или со значительным ускорением. Динамич. нагрузки прп испытании материалов м. б. однократные ударные, при к-рых тело разрушается от одного удара, и вибрационные, вызывающие разрушение при многократном возде11ствии динамич. нагрузок, с ударом или без него, но с большим ускорением. Крепость ири ударной нагрузке иногда называется в п з к о с т ь ю, а крепость при вибрационной нагрузке получила название вынос л и в о с т и. Кроме перечисленных видов действия внешних сил нужно отличать еще случай весьма длительного действия статич. нагрузки, а также силы трения, вызывающие медленное разрушение (истирание) и характеризуемые величиной изнашивания. Так как Д. является материалом анизотропным, то при характеристике действия сил на нее необходимо указывать еще их направление по отношению к направлению волокон (вдоль и поперек волокон) и годовых слоев (радиальное и тангентальное направление). Механич. свойства Д. определяются путем механич. испытаний ее в большинстве случаев на малых чистых (без пороков) образцах. Получаемые в результатах таких испытаний цифры характеризуют Д. с точки зрения ее доброкачественности, но не всегда могут  [c.102]


При воздействии ультразвука, как уже указывалось, возникает динамическая сила, которая в несколько раз выше статической силы. Поэтому сила и возникновение трещины достигаются на более ранней стадии нагружения. Этим и обьясняется ультразв> ко-вая интенсификация процессов механической обработки хрупких материалов. Глубина распространения трещины определяется величиной приложенной нагрузки, состоянием поверхностного слоя и свойствами обрабатываемого материала.  [c.336]


Смотреть страницы где упоминается термин Механические свойства, определяемые при статических нагрузках : [c.172]    [c.59]   
Смотреть главы в:

Материаловедение  -> Механические свойства, определяемые при статических нагрузках



ПОИСК



1.125, 126 — Определяемые

Механические нагрузки

Механические свойства при статических нагрузках

Нагрузка статическая



© 2025 Mash-xxl.info Реклама на сайте