Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Испытания на высокотемпературную пластичность

ИСПЫТАНИЯ НА ВЫСОКОТЕМПЕРАТУРНУЮ ПЛАСТИЧНОСТЬ [9, 17, 18, 33]  [c.346]

Из опыта эксплуатации кулачковых и торсионных пластометров и задач, которые стоят в области изучения реологических свойств металлов и сплавов для процессов ОМД, можно определить требования, которым должны удовлетворять современные установки подобного типа - 1) широкий регулируемый скоростной диапазон испытаний в пределах 0,01—500 с 2) возможность получения больших степеней деформации (испытания на плоскую осадку, кручение) 3) возможность воспроизведения самых различных, заранее программируемых и управляемых с помощью ЭВМ законов нагружения как за один цикл испытаний, так и при дробном деформировании 4) возможность записи кривых релаксаций в паузах между нагружениями с длительностью пауз от 0,05 до 10 с 5) фиксация структуры металла с помощью резкой закалки образца в любой точке кривой течения 6) оснащение установок высокотемпературными печами для нагрева образцов до 1250 °С в обычной среде и в вакууме или среде инертного газа до 2000—2200 °С 7) возможность воспроизведения при испытаниях, особенно дробных, различных законов изменения температуры металла, фиксация температуры образца с помощью быстродействующих пирометров 8) возможность проведения испытаний не только при одноосных схемах напряженного состояния, но и в условиях сложнонапряженного состояния, особенно при исследовании предельной пластичности 9) обеспечение высоких требований по жесткости машин, по техническим характеристикам измерительной и регистрирующей аппаратуры, возможность стыковки с ЭВМ (УВМ) для автоматизированной обработки данных и управления экспериментом.  [c.49]


Усталостной долговечностью во многих случаях считают число нагружения до полного разрушения образца. Однако обычно усталостной долговечностью называют число циклов нагружения до повреждения Nf, при котором растягивающая нагрузка падает на несколько процентов по отношению к устойчивому состоянию. Это вызвано тем, что в некоторых случаях при росте трещины становится невозможным игнорировать периодическое раскрытие трещины при нагружении, хотя, в частности, в пластичных материалах скорость распространения трещины уменьшается, разрушение не достигается. В Японии в качестве усталостной долговечности Nf часто рассматривают [25] число циклов нагружения при котором растягивающие напряжения уменьшаются до 3/4 максимальной величины, при этом образуется устойчивая петля гистерезиса. Среди других методов испытаний следует указать [52] метод испытаний на термическую усталость, установленный Комитетом по высокотемпературной прочности Японского общества материалов. Этот метод вполне можно считать подходящим для применения в исследованиях.  [c.229]

В результате повышенной пластичности, в противоположность другим сплавам, наблюдалась более низкая чувствительность к образованию и распространению трещин при высокотемпературных испытаниях. На продольных шлифах, приготовленных из разрушившихся после испытания на длительную прочность образцов, было обнаружено множество мелких трещин, которые не получили значительного развития. Ранее рассмотренные сплавы обычно обнаруживали одну крупную трещи-  [c.158]

Результаты испытаний на растяжение (табл. 2.7) показывают, что прочностные свойства стали после ВТМО + повторная термическая обработка хуже, чем после ВТМО (особенно пластичность). Причина этого — особенности субструктурных изменений, происходящих при высокотемпературной деформации. Как уже указывалось, эти изменения зависят от температурных, силовых и скоростных условий деформации.  [c.60]

Пластичность металла, оцениваемая по удлинению образцов до разрушения, существенно зависит от характера разрушения (рис. 6.4, б). При вязком разрушении происходит монотонное уменьшение пластичности по мере увеличения времени до разрушения. При переходе от вязкого разрушения к хрупкому межзеренному (4, 4) пластичность резко снижается. Разрушения конструкций, в том числе и сварных, при высоких температурах, как правило, происходят без заметной пластической деформации, т. е. хрупко. Изучение причин хрупкости по результатам испытаний на длительную прочность требует большого времени и затруднено разбросом значений пластической деформации. Более стабильные результаты по высокотемпературной пластичности могут быть получены за сравнительно короткие промежутки времени при испытаниях с постоянной скоростью деформации, обеспечиваемой равномерным перемещением захватов машины. Установлены закономерности изменения пластичности при высоких температурах. При  [c.178]


Определяют также влияние высокотемпературного окисления при испытании на ползучесть, оценивая прочность и пластичность системы покрытие — основа при комнатной температуре. При этом образцы нагревают под нагрузкой, составляющей определенный процент от предела текучести основного материала. Влияние такой выдержки на прочность материала определяют при испытании на  [c.254]

Хотя чашечное испытание и является стандартным в промышленных условиях, проведение такого испытания при высоких температурах может привести к получению неправильных данных. Методы испытания новых высокотемпературных материалов очень разнообразны, например измерение коэффициента трения между матрицей и покрытием с изменением материала или измерение коэффициентов расширения покрытия и основного материала. Ясно, что остро необходимы новые, более совершенные способы испытания на пластичность. В будущем предварительное покрытие материалов найдет широкое распространение, но для того, чтобы это произошло, необходима большая исследовательская работа. Прежде чем промышленность сможет правильно использовать материалы с предварительным покрытием, должны быть установлены надежные методы испытаний на пластичность, ковкость и механическую обрабатываемость.  [c.337]

Деформация образцов при высокотемпературных испытаниях наиболее просто определяется по перемещению подвижного захвата микромашины. Такой метод является основным при испытаниях малых образцов, проволок, фолы. Для более точного измерения характеристик пластичности нами разработано и применяется несколько специальных способов и устройств [42—44], которые также основаны на записи перемещения подвижного захвата машины.  [c.114]

ВТРО было открыто сравнительно недавно — в 1963 г. — одновременно советскими и зарубежными исследователями [981. Это явление заключается в значительном и необратимом снижении пластичности облученного материала при его испытании при температурах выше 0,5 Тал,- ВТРО наблюдали на аустенитных сталях [1 — 8, 13—24, 27—43, 55—721, никеле и его сплавах [6, 9, 13, 18, 21, 23, 25, 26, 33, 361, алюминии [32], ванадии [101, меди и ее сплавах [521, ферритных сталях [21, 39, 441 и др. Высокотемпературное радиационное охрупчивание проявляется только на поликри-сталлических материалах на монокристаллах это явление не наблюдается [25], что свидетельствует о связи ВТРО с процессами, происходящими на границе зерен. Действительно, материалы, на которых наблюдается ВТРО, разрушаются преимущественно по границам зерен. Высокотемпературное радиационное охрупчивание в отличие от обычного низкотемпературного радиационного охрупчивания не может быть устранено длительным отжигом при высоких температурах.  [c.95]

Поковки для больших высокотемпературных роторов должны обладать максимально высоким пределом ползучести, сочетающимся с высокой пластичностью. Эти свойства достигаются контролируемыми выделениями карбида ванадия в бейнитной структуре 1 % Сг, Мо, V стали (3]. В некоторых случаях из-за сложности термообработки свойства металла на поверхности и в сердце-вине оказываются различными. Ползучесть типичной роторной стали за 10 ч при 500° С при напряжении 46 МН/м деформация 0,10%, а при напряжении 108 МН/м деформация 1%. Сопротивление усталости этого материала в зависимости от продолжительности испытаний показано на рис. 15.6 [2].  [c.212]

Рост рабочих параметров турбоагрегатов и, в первую очередь, их единичных мощностей связан с необходимостью увеличения абсолютных размеров сечений и длины несущих частей корпусов и роторов. Масса роторов турбин при различных вариантах их исполнения повышается от 30—50 до 80—150 т. При этом для цельнокованых роторов низкого давления используют уникальные слитки массой от 100 до 550 т. Такое увеличение размеров исходных заготовок и готовых роторов, вызванное рядом технологических факторов (видом заготовки — отливка или поковка, термообработкой и т. п.), может привести к повышению неоднородности механических свойств материала уменьшению пластичности на 20—50 %, ударной вязкости на 40—60 %. Для зон роторов, находящихся под действием циклических нагрузок, существенное значение имеет эффект абсолютных размеров, состоящий в уменьшении на 40—60 % пределов выносливости (при базовом числе циклов 10 —10 ) с переходом от стандартных лабораторных образцов к реальным роторам. Неблагоприятное влияние увеличения абсолютных размеров сечений подтверждается также результатами испытаний образцов на трещиностойкость. Различие в критических температурах хрупкости в центральной части поковок по сравнению с периферийной может достигать 40—60 °С абсолютные значения критических температур для сталей в ряде случаев составляют 60—80 °С, а для высокотемпературных роторов из r-Mo-V сталей 120—140 °С. Это имеет существенное значение для роторов турбин при быстрых пусках, когда температура металла ротора может оказаться ниже критической.  [c.6]


Прямые методы испытаний сочетают с анализом фазовых и структурных превращений, протекающих в сварных соединениях при охлаждении, и изучением механических свойств околошовной зоны. Кинетику фазовых и структурных превращений исследуют с помощью быстродействующего дилатометра (см. гл. П, п. 2) [2] или используют специальные дисковые образцы [86]. Для определения влияния пластической деформации на фазовые превращения применяют дилатометр, совмещенный с высокотемпературным вакуумным микроскопом [2]. Об изменении пластичности и прочности металла в околошовной зоне судят по  [c.159]

С использованием описанной выше методики были проведены испытания многочисленных материалов для различных условий эксплуатации (в том числе пластичных смазок универсального назначения, смазочных материалов для текстильной промышленности, высокотемпературных масел и пр.). Простота и доступность, возможность реализации на различных машинах трения, отсутствие необходимости применять сложное и дорогостоящее оборудование сочетаются при использовании этой методики с высокой достоверностью получаемых результатов.  [c.287]

На рис. 6.56 представлены кривые длительной прочности стали 1Сг—1Мо— 0,25V и кривые, характеризующие удлинение при разру- шении. Сталь подвергали термической обработке по двум режимам сталь HD после обычной термообработки (нормализация, отпуск) имела высокую пластичность сталь LD после выдержки при высокой температуре обработки на твердый раствор имела низкую пластичность. Для стали LD с низкой пластичностью получают более высокую длительную прочность. Результаты испытаний на высокотемпературную малоцикловую усталость сталей, термообработанных по обоим режимам, приведены на рис. 6.57 у высокопластичной стали HD усталостная долговечность в отличие от длительной прочности большая, кроме того, у этой стали более медленно снижается долговечность при увеличении времени выдержки.  [c.237]

В сталях аустенитного класса и никелевых жаропрочных сплавов наряду с обычным радиационным упрочнением н охрупчиванием наблюдается еще так называемое высокотемпературное радиационное охрупчивание. Оно проявляется в снижении длительной пластичности и прочности и уменьшении относительного удлинения нри испытании на растяжение при температурах выше 600°С. Высокотемпературное охрупчивание зависит от флюеиса не только быстрых, но и тепловых нейтронов (табл, 8,50),  [c.302]

В частностиу испытания при постоянной скорости деформации дают нам кривые, явным образом не зависящие от времени. Теория пластичности, основанная на экспериментах этого типа, действительно не учитывает зависимости от времени [344]. С другой стороны, результаты испытаний на ползучесть интерпретируются в рамках теории вязкого течения. Следует подчеркнуть, что разница между ними лишь кажущаяся. Орован [269], вероятно, первым указал, что пластические свойства материала невозможно описать с помощью кривых о(е) (как это делается в теории пластичности). Напротив, это описание должно основываться на данных о скорости течения е при различных напряжениях, температурах ц состояниях деформационного упрочнения, которые зависят не только от напряжения, но и от всей предыдущей истории нагружения образца. Харт [161] в свою очередь также отмечает, что всегда нужно найти определяющие законы, которые могут описать временную и температурную зависимость пластического течения, и что деформация, которая обычно описывается как пластичность, не зависящая от времени, на самом деле является кинетическим процессом, который качественно не отличается от высокотемпературной ползучести ,  [c.37]

После высокотемпературного окисления образцы испытывали на изгиб и твердость для оценки пластичности подложки. Пластичность подложки считалась достаточной, если образец выдерживал загиб на угол 90° без признаков разрушения основного металла. Испытания на загиб проводили при комнатной температуре на специальном приспособлении под действием постоянного усилия со скоростью деформации 0,25 мм1мин по радиусу изгиба, равному полуторной исходной толщине подложки. Все образцы с покрытиями в состоянии поставки выдерживали без разрушения загиб на угол не меньше 120°. После непрерывного окисления все образцы также выдержали испытания (загиб на 90°), а после циклического окисления худшие защитные свойства были обнаружены у покрытий СП и ЬВ-2.  [c.312]

Нам представляется возможным, что в ряде случаев высокотемпературные провалы нластичиостн связаны с обратимой хрупкостью, обусловленной примесями внедрения, отличающимися от водорода. Для примера на рис. 167 приведено влияние температуры испытаний на механические свойства хорошо дегазированного в вакууме титана прн различных скоростях деформаций [364]. Эти данные показывают, что высокотемпературная хрупкость титана действительно проявляется в определенном температурном интервале, который смещается к более высоким температурам с увеличением скорости деформации. Качественно изменение пластичности титана с температурой при разных скоростях деформаций довольно хорошо согласуется с изменением пластичности металлов при развитии обратимой водородной хрупкости (рис. 156). Высокотемпературная хрупкость в отличие от водородной хрупкости сильнее сказывается на относительном удлинении, чем на поперечном сужении.  [c.364]

Различают следующие типы горячих трещин кристаллизационные или ликвационные, подсолидусные и подваликовые. Кристаллизационные горячие трещины образуются при температуре, превышающей температуру солидуса. Полигонизационные трещины появляются после завершения первичной кристаллизации вследствие возникновения в структуре вторичных полигонизацион-ных границ [78]. Дефекты типа горячих трещин обнаруживаются как в металле шва, так и в металле околошовного участка ЗТВ вблизи линии сплавления. В соответствии с существующими представлениями, развитыми в работах Н. Н. Прохорова и его сотрудников, технологическая прочность в процессе кристаллизации определяется температурным интервалом хрупкости металла (ТИХ), его пластичностью б и темпом деформации в ТИХ а. Полагают, что горячая трещина образуется, если деформации растяжения развиваются в период нахождения металла в ТИХ, а скорость деформации велика. В соответствии с ГОСТ 26389—84 применяют машинные или технологические методы испытаний. Машинные основаны на высокотемпературной деформации металла при сварке до образования трещин под действием внешних сил, а технологические — на выявлении трещин, образовавшихся под действием внутренних сил от усадки шва и формоизменения элементов.  [c.124]


В форме уравнения (1.2.12) могут быть выражены и описанные выше экспериментальные данные для стали Х18Н10Т при 650° С, полученные на испытательной машине без следяш ей системы нагружения, когда после достижения заданной величины размаха деформаций (напряжений) привод отключается на время высокотемпературной выдержки. Правомочность интерпретации указанных экспериментов в форме, характерной для усталостных испытаний, следует из того, что односторонне накопленная деформация в таких испытаниях невелика по сравнению с располагаемой пластичностью и основная доля повреждения накапливается за счет усталостного повреждения (см. табл. 1.2.1).  [c.33]

Разрушению в диапазоне комнатных температур могут подвергаться сварные изделия во время ремонта и последующего испытания конструкций, бывших в эксплуатации при высоких температурах. Причиной их в этих случаях обычно являются процессы высокотемпературного охрупчивания, не сказывающиеся заметно на пластичности и вязкости при высоких температурах, но заметно повышающие хрупкость при комнатной температуре. К таким процессам относится тепловая хрупкость и деформационное старение низколегированных конструкционных и теплоустойчивых сталей, 475-градусыое и а-охрупчиваиие ферритных и аустенитных сталей и ряд других процессов старения. Механизм развития указанных видов хрупкости и способы ее устранения будут рассмотрены в главах, посвященных соответствующим сталям.  [c.71]

В зависимости от режима термическая обработка оказывает разное влияние на длительную прочность металла шва (п, 6). Проведение отпуска перлитных швов и стабилизации аустенитных изменяет ее в большинстве случаев сравнительно мало относительно исходного состояния ввиду стабильности субструктуры швов, созданной при сварке. В то же время длительная пластичность сварных швов в результате проведения отпуска даже такого относительно малолегированного шва, как шов типа Э-50А (электроды марки УОНИИ 13/55), может заметно повР)1шаться (рис. 54). Особенно это сказывается на чувствительности к концентрации напряжений, оцениваемой в условиях испытания образцов со спиральным надрезом (штриховая линия). Введение подогрева при сварке способствует повышению длительной пластичности, однако достигнутый при этом уровень ниже значений после отпуска. Наибольшая длительная пластичность обеспечивается проведением высокотемпературной термической обработки.  [c.89]

Введение операции перестаривания заготовок увеличило время до образования околошовных трещин в опасном интервале температур по результатам испытания технологических проб до 500 мин, т. е. практически исключило их появление. Ее положительное влияние связано с коагуляцией в процессе перестаривания упрочняющей фазы, снижением вследствие этого высокотемпературной прочности II повышением пластичности сплава. Из-за кратковременности процесса сварки скоагулированные частицы упрочняющей фазы не успевают полностью раствориться при нагреве участка околошовной зоны во время сварки, поэтому охрупчивание ее меньше. Отмечается далее, что вследствие меньшей высокотемпературной прочности перестаренного основного металла по сравнению с околошовной зоной деформации релаксации при термической обработке проходят в данном случае преимущественно по основному металлу. Так как при этом участки околошовной зоны в деформацию вовлекаются значительно меньше, то вероятность образования в ней трещин снижается. Благоприятное влияние от введения операции перестаривания заготовок на околошовное растрескивание было многократно подтверждено на ряде высокожаропрочных сплавов на никелевой основе, сварные узлы из которых не могли быть получены без трещин, если не вводилось перестаривания заготовок.  [c.249]


Смотреть страницы где упоминается термин Испытания на высокотемпературную пластичность : [c.174]    [c.91]    [c.347]    [c.66]   
Смотреть главы в:

Металловедение и термическая обработка стали Т1  -> Испытания на высокотемпературную пластичность



ПОИСК



Высокотемпературная ТЦО



© 2025 Mash-xxl.info Реклама на сайте