Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Преобразователь вентильный

Силовая схема электропривода состоит из двигателя М, якорная цепь которого питается через ограничительные реакторы L1—L4 от двух вентильных комплектов V 1 и V 2 реверсивного тиристорного преобразователя. Вентильные комплекты подключены к сети переменного тока через понижающий трансформатор ТМ. Каждый вентильный комплект обеспечивает протекание тока через якорную цепь М при определенной ее полярности.  [c.20]


Электрический двигатель постоянного тока независимого возбуждения Д(- питается от вентильного усилительно-преобразовательного элемента (УПЭ) с цифровым управлением на базе микроконтроллера. Электромеханическая исполнительная схема может быть оснащена датчиками напряжения на выходе преобразователя f/fl (t) датчиками тока для замера тока в якорной цепи (г) датчиками момента для замера момента М в кинематических цепях датчиками скорости двигателя f/тт датчиками позиционирования, например, угла поворота ф. В реальных условиях стараются использовать минимально возможное количество датчиков при допустимой точности работы системы.  [c.88]

Ульмасов X. У. Исследование и разработка цифровых систем управления полностью управляемыми вентильными преобразователями Автореф.  [c.180]

Привод насоса с синхронным электродвигателем и статическим преобразователем частоты (вентильный электропривод) состоит из статического преобразователя частоты с естественной коммутацией, синхронного неявнополюсного электродвигателя и возбудителя с системой управления (рис. 4.27), Синхронный двигатель более надежен по сравнению с асинхронным и обладает высоким пусковым моментом и малыми пусковыми токами, чем обеспечивается пуск ГЦН из турбинного режима.  [c.131]

Схема питания асинхронного двигателя переменной частотой от вентильного умформера М — асинхронный двигатель С— синхронная машина Т — трансформатор /7i — ионный преобразователь, управляющий скоростью и частотой умформера Я,—ионный преобразователь, переключающий обмотки умформера (ионный коллектор) Д — сглаживающий дроссель В — обмотка возбуждения умформера  [c.145]

Мощность и os tp асинхронного дви гателя при питании его от вентильного умформера уменьшаются на 5— 10 /о по сравнению с питанием от синхронного генератора (по данным ВЭИ). Предельная мощность двигателя ограничивается только мощностью преобразователя  [c.145]

Выходной сигнал регулятора скорости AYI через разделительные диоды VI и V2 (см. рис. 4) поступает на входы регуляторов тока AY2 и AY3. Разделительные диоды предназначены для того, чтобы в зависимости от полярности сигнала на выходе регулятора Л 7 обеспечить работу лишь требуемого вентильного комплекта реверсивного тиристорного преобразователя. Для того чтобы исключить прерывистый режим работы тиристорного преобразователя и таким образом обеспечить линейность механических характеристик электропривода, в систему регулирования введен регулятор уравнительного тока AY4. Сигнал с выхода последнего подается одновременно на входы обоих регуляторов AY2 и AY3.  [c.21]


У вентильного генератора выше КПД — около 0,7, тогда как у коллекторного — 0,6.,.0,65 лучшие массовые характеристики — соответственно 0,37... 0,42 и 0,55... 0,58 кг/А. Преимуществом вентильного генератора можно считать его универсальность по роду тока. По сравнению с выпрямителем вентильный генератор заметными преимуществами не обладает. Он предназначен в основном для замены коллекторного генератора при отсутствии электрической сети, когда выпрямитель неприменим. Индукторный генератор имеет естественную крутопадающую характеристику, что вызвано действием магнитных потоков рассеяния и потока реакции якоря, обладающего размагничивающим действием. Получить жесткую характеристику у вентильного генератора сложнее. Регулирование режима вентильного генератора осуществляется на стадии переменного тока плавно — изменением тока обмотки возбуждения, ступенчато — изменением способа соединения силовых обмоток (звезда, треугольник, параллельное соединение). Технические характеристики сварочных генераторов, преобразователей и агрегатов приведены в табл. 5.5.  [c.141]

Статические характеристики, показанные на рис. 9.4.3, могут быть отнесены и к вентильному электродвигателю, который состоит из электродвигателя переменного тока, по конструкции аналогичного синхронному, и вентильного коммутатора - преобразователя частоты, управляемого в функции положения ротора или магнитного потока двигателя. Вентильный коммутатор функционально заменяет щетки и вращающийся коллектор, характерные для двигателя постоянного тока.  [c.548]

Колебания напряжения создаются мощными ударными нагрузками прокатными станами с вентильными преобразователями электроприводов, электродуговыми сталеплавильными печами и другими устройствами, подобными по характеру работы, а также электротягой.  [c.207]

Типичным примером вентильного приемника является угольный микрофон. Звуковое давление изменяет электрическое сопротивление контактов между зернами угольного порошка, в результате чего ток в цепи, составленной из батареи, микрофона и первичной обмотки трансформатора, меняется в такт с колебаниями звукового давления. Изменение этого тока, в свою очередь, вызывает изменение магнитного потока в ярме трансформатора и возникновение электродвижущей силы во вторичной цепи трансформатора. Источником энергии электрических колебаний, получающихся во вторичной цепи трансформатора, является батарея, а не акустическое поле. Обратить угольный микрофон в излучатель звука, приложив ко вторичной обмотке трансформатора переменное напряжение звуковой частоты, невозможно. Необратимые преобразователи используются в ряде случаев для целей акустических и вибрационных измерений.  [c.48]

На электровозах переменного тока со статическими преобразователями (с полупроводниковыми или ртутными вентилями) применяют обычно тяговые двигатели постоянного (точнее пульсирующего) тока (рис. ИЗ), скорость вращения которых регулируют, изменяя величину подводимого к ним напряжения, асинхронные трехфазные двигатели и вентильные двигатели. На электроподвижном составе с асинхронными трехфазными тяговыми двигателями скорость вращения их роторов, а следовательно, и скорость движения регулируют изменением частоты при помощи управляемых кремниевых вентилей (тиристоров).  [c.209]

Структурные схемы стационарных средств заряда с электромашин-ными преобразователями состоят из асинхронного двигателя и генератора в одно- или двухкорпусном исполнении. В статических зарядных устройствах специального назначения с неуправляемыми вентилями в схему входят силовой трансформатор 1 (рис. 3.2, а), вентильный блок 2, фильтрующее устройство 3 и нагрузка (АБ) 4. Штриховыми линиями на этом же рисунке показан дополнительный элемент — система управления 5, которая кроме перечисленных элементов 1—4 входит в схему  [c.34]


Выпрямитель — наиболее распространенный в силовых системах и системах управления и регулирования вид статического (вентильного) преобразователя. Выпрямители нашли широкое применение на тепловозах с передачами постоянного тока в системах регулирования и защиты, с машинами переменного тока их применение еще шире и захватывает основные узлы энергетической цепи. Выпрямители классифицируют по схеме преобразования (числу фаз, числу плечей преобразователя). Наиболее часто применяются однофазные и трехфазные системы выпрямления.  [c.133]

Вентильные сварочные генераторы входят в состав сварочных агрегатов АДБ с двигателями внутреннего сгорания и сварочных преобразователей ПД с асинхронными двигателями. Агрегаты АДБ применяют для работы в полевых условиях, преобразователи ПД — в заводских.  [c.125]

Основной неисправностью преобразователя с вентильным генератором является выход из строя силовых вентилей на большом токе. Чтобы избежать этого, следует не допускать перегрузки генератора.  [c.78]

В установках о полупроводниковыми преобразователями изоляция цепей, связанных с вентильными обмотками преобразовательных тр-ров, цепей управления и сеточной защиты, а также цепей, которые могут ока-ваться под потенциалом вентильных обмоток при пробое изоляции, должна выдерживать в течение 1 мин следующие / с перем. тока частотой 50 Гц  [c.364]

Сварочный преобразователь ПД-305 имеет вентильный генератор.  [c.45]

Преобразователь ПД-305. Предназначен для однопостовой ручной сварки и резки. Нормальная работа преобразователя возможна только при направлении вращения, указанном на торце преобразователя. Преобразователь состоит из вентильного генератора постоянного тока, трехфазного асинхронного электродвигателя, аппаратуры управления.  [c.49]

Преобразователи с несогласованным управлением имеют меньшие габариты реакторов, чем при согласованном управлении. Однако при несогласованном управлении снижается диапазон допустимых углов регулирования, что приводит к худшему использованию трансформатора и уменьшению коэффициента мощности установки. Одновременно нарушается линейность регулировочных и скоростных характеристик электропривода. Для полного исключения уравнительных токов используется раздельное управление вентильными группами.  [c.102]

В книге изложены основные положения промышленной электроники, касающиеся работы тиристоров и построенных на их базе силовых схем преобразователей. Рассмотрены следующие схемы работы электроприводов переменного тока со статистическими преобразователями с частотным управлением при помощи преобразователей частоты со звеном постоянного тока и с непосредственной связью, электроприводы с вентильными двигателями, с тиристорными регуляторами напряжения, схемы асинхронного вентильного каскада, а также импульсного управления в цепи статора и ротора асинхронного двигателя.  [c.240]

В автоматпзировапном приводе двигатель постоянного тока с независимым возбуждением питается от индивидуального управляемого источника, образуя систему управляемый преобразователь — двигатель (УП—Д). В качестве управляемого преобразователя используется электромашинный преобразователь — генератор Г (система Г—Д) либо управляемый вентильный преобразователь (УВП — Д) (рис. 12, а, б) [103, 104]. Из числа УВП в Современиых автоматизированных электроприводах постоянного тока широкое применение получили тиристорные преобразователи ТП (системы ТП — Д).  [c.21]

Изменение частоты напряжения, питающего асинхронный двигатель. Питание двигателя может осуществляться от коллекторного генератора системы Костенко или по схеме с вентильным умформером (синхронной машиной), питаемой через ионные преобразователи (ртутные ВЫ прямителя, тиратроны)  [c.145]

На тепловых и атомных электрических станциях находят самое широкое применение в основном асинхронные и синхронные двигатели, выполненные, как правило, в защищенном, закрытом или взрывобезопасном исполнении. Двигатели постоянного тока используются в специальных случаях, когда требуется плавное регулирование частоты вращения. В последнее время их заменяют вентильные синхронные двигатели синхронные двигатели с преобразователем частоты в цепи статора асинхронные двигатели с короткозамкнутым ротором и преобразователем частоты в цепи статора асинхронные двигатели с фазным ротором и преобразователем частоты в цепи ротора. Основные цели применения таких регулируемых электроприводов для механизмов собственных нужд электростанций — экономия электроэнергии (топлива) за счет плавного регулирования частоты вращения исключение ненадежных запорных механизмов, шиберов, заслонок и т.п. исключение двухскоростньгх ступенчатых переключаемых электродвигателей.  [c.619]

Привод подачи для станков с ЧПУ. В качестве привода используют двигатели, представляющие собой управляемые от цифровых преобразователей синхронные или асинхронные машины. Бескол-лекторные синхронные (вентильные) двигатели для станков с ЧПУ изготовляют с постоянным магнитом на основе редкоземельных элементов и оснащают датчиками обратной связи и тормозами. Асинхронные двигатели применяют реже, чем синхронные. Привод движения подач характеризуется минимально возможными зазорами, малым временем разгона и торможения, небольшими силами трения, уменьшенным нагревом элементов привода, большим диапазоном регулирования. Обеспечение этих характеристик возможно благодаря применению шариковых и гидростатических винтовых передач, направляющих качения и гидростатических направляющих, беззазорных редукторов с короткими кинематическими цепями и т.д.  [c.275]


Несинусоидальность напряжения возникает при наличии в электрических сетях нелинейных нагрузок вентильных преобразователей, электродуговых сталеплавильных печей, мощных установок элект-родуговой и контактной сварки. В целом в качестве источников гармонических составляющих могут рассматриваться металлургические, электрометаллургические, химические предприятия, электрифицированный железнодорожный транспорт, преобразовательные подстанции электропередач постоянного тока.  [c.207]

Потребление электроэнергии нагревательными электропечами непрерывного действия весьма равномерно. Нагревательные электропечи периодического действия работают циклично. Характер циклов зависит от технологического процесса и нагреваемого металла. Толчки тока выше номинального отсутствуют. Канальные электропечи работают обычно круглосуточно, и перебои при этом нежелательны. Режим тигельных нагревательных электропечей зависит от работы оборудования цеха, перерывы допустимы. Электропечи и устройства с питанием от электромашинных преобразователей повышенной частоты и от электромашинных источников питания постоянного тока представляют для сетей трехфазную нагрузку. График потребления энергии различен, так как зависит от технологического процесса и числа установок, подключенных к одному генератору. Для нагревательных и закалочных индукционных установок график потребления мало отличается от среднего графика машиностроительных заводов они малоинерционны и могут отключаться так же, как установки на 50 Гц. Широко используются вентильные преобразователи повышенной и высокой частоты, постоянного тока, пониженной частоты, вентильные преобразователи — регуляторы переменного тока. Регуляторы выполняются трехфазными и однофазными, причем в последнем случае их иногда применяют вместе с симметрирующими устройствами. Наиболее распространены и перспективны тиристорные преобразователи. В качестве источников питания высокочастотных установок широко применяют ламповые генераторы.  [c.446]

Использование вентильных преобразователей любого типа связано с появлением в сети высших гармонических составляющих, из которых наиболее существенны 5, 7, И и 13-я гармоники. В результате в электрических аппаратах и линиях передач возрастают потери, сокращается срок службы изоляции, повышается аварийность кабельных сетей, ухудшается работа системы автоматизации, телемеханики и связи, снижается надежность работы конденсаторов (из-за резонансных явлений на высших гармониках). Если несинусоидаль-ность, обусловленная высшими гармониками, превышает 5 % и возможны резонансные явления на гармониках, необходимо уровень гармоник снижать, используя рациональные схемы электроснабжения и фильтра.  [c.446]

В общем случае электромеханическими преобразователями называют не только устройства, действительно преобразующие подведенную к ним энергию электрических колебаний в механическую, но и такие, которые лишь управляют потоком энергии какого-либо источника, превращая этот поток энергии в колебательный. В соответствии с этим электромеханические преобразователи можно разделить па 1) собственно преобразователи колебательной энергии и 2) вентильные или релейные электромеханические аппараты. Вентильные электроакустические преобразователи называют также необратимыми, поскольку, например, вентильный приемник звука нельзя заставить излучать звук, подводя к нему колебательную электрическую энергию.  [c.48]

В последнее время наблюдается тенденция перехода от приводов с двигателями постоянного тока в станках с ЧПУ к глубокорегулируемым электроприводам на базе бесколлек-торных (вентильных) двигателей переменного тока, а также ведется разработка шпиндельных узлов типа мотор-шпиндель (например, мотор-шпиндель мод. МШТ-1). Такой узел представляет собой шпиндельную бабку со встроенным регулируемым от статического преобразователя частоты специальным асинхронным электродвигателем, ротор которого расположен непосредственно на шпинделе станка.  [c.424]

Источники питания имеют различные внещние вольт-амперные характеристики (рис. 92) естественную, жесткую и щтыковую. Источники питания с естественной 1 и жесткой 2 характеристиками являются источниками напряжения. Для них режим короткого замыкания является аварийным, поскольку их внутреннее сопротивление близко к нулю. Источники питания со штыковой 3 характеристикой являются источниками тока. Для источников тока параметрического типа аварийным является режим холостого хода, так как они содержат реактивные элементы, напряжение на которых при отключении нагрузки резко возрастает, что может вызвать пробой отдельных элементов выпрямительного агрегата. В статических преобразователях, используемых при размерной ЭХО, применяются неуправляемые и управляемые вентильные схемы.  [c.158]

Сварочный преобразователь состоит из коллекторного или вентильного (безколлекторного) генератора постоянного тока и асинхронного двигателя, установленных на общем валу. В коллекторных генераторах переменная э. д. с., индуктируемая в якоре, выпрямляется во вращающемся контактном устройстве, называемом коллектором. Внешние характеристики сварочных генераторов и ограничение тока короткого замыкания достигаются с помощью соответствующих электрических схем генераторов. Коллекторные генераторы выпускают следующих схем с независимым возбуждением и размагничивающей последовательной обмоткой с самовозбуждением и размагничивающей последовательной обмоткой (с намагничивающей параллельной и размагничивающей последовательной). Генератор с самовозбуждением менее чувствителен к кратковременным колебаниям напряжения электрической сети, чем гене-  [c.38]

В технике используют полупроводниковые материалы, которые имеют /7- -переходы, обусловливающие запорный слой, с униполярной проводимостью и выпрямительньш эффектом для переменного тока. Полупроводниковые материалы дают возможность изготовлять выпрямители, усилители и генераторы различной мощности, преобразователи различных видов энергии в электрическую и обратно (солнечные батареи, термоэлектрические генераторы и др.), нагревательные элементы, датчики Холла для измерения напряженности магнитного поля, индикаторы радиоактивных излучений, различные датчики (давления, температуры), регуляторы тока и напряжения, нелинейные сопротивления для вентильных разрядников защитной аппаратуры в линиях высокого напряжения, счетчики ядерных частиц, элементы памяти в вычислительных машинах.  [c.237]

Для снижения бероятности повреждения вентилей в схемах преобразователей с высокими скоростями нарастания тока в вентильных плечах следует применять управляющие импульсы со скоростью нарастания тока управления не ниже 1 А/мкс для быстрейшего перевода всей активной площади тиристора в состояние высокой проводимости. Кроме того, в необходимых случаях должны быть приняты меры для снижения скорости нарастания анодного тока (например, путем установки в цепи с тиристорами дросселей насыщения).  [c.149]

Сварочные преобразователи и агрегаты. Основным узлом сварочных преобразователей и агрегатов является сварочный генератор. Магнитные системы и расположение обмоток возбуждения сварочных генераторов и генераторов постоянного тока общепромышленного нс-полненвя различны. Наибольшее распространение получили сварочные генераторы, обладающие падающими внешними характеристиками и работающие по четырем основным магнитоэлектрическим схемам с независимым возбуждением и последовательной размагничивающей обмоткой самовозбуждением и последовательной размагничивающей обмоткой вентильные со специальной схемой самовозбуждения.  [c.122]


Промышленность выпускает однопостовый преобразователь ПД-305 для ручной дуговой сварки, имеющий вентильный генератор ГД-317, представляющий  [c.72]

Основное звено в частотнорегулируемой передаче переменного тока — статический преобразователь. В качестве двигателя переменного тока. можно применить асинхронные короткозамкнутые двигатели или синхронные машины (так называемые вентильные двигатели). По простоте конструкции и надежности асинхронный электродвигатель наиболее приемлем для подвижного состава.  [c.26]

На. участках переменного тока работают локомотивы со статическими преобразователями и двигателями пульсирующего тока. Созданы опытные образцы мощных электровозов с бесколлекторными двига- телями — асинхронными и вентильными.  [c.95]

П. и. и изменяется в очень широких пределах (см. Инфракрасное излучение). К фотозлектрич. приемникам относятся различного рода фотоэлементы [с внешним фотоэффектом, с внутр. фотоэффектом (или фотосопротивления), с запирающим слоем (или вентильные фотоэлементы)], фотодиоды, фотозлектрич. агсюды электронно-оптических преобразователей, счетчики фотонов.  [c.199]


Смотреть страницы где упоминается термин Преобразователь вентильный : [c.348]    [c.488]    [c.229]    [c.130]    [c.556]    [c.68]    [c.161]    [c.39]    [c.28]    [c.363]   
Динамика управляемых машинных агрегатов (1984) -- [ c.21 ]

Машиностроение Энциклопедия Оборудование для сварки ТомIV-6 (1999) -- [ c.449 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте