Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диаграмма растяжения. Механические характеристики материала

Диаграмма растяжения. Механические характеристики материала  [c.39]

При построении диаграммы растяжения напряжения определяются по отношению к начальной площади (Fq) поперечного сечения образца, относительные удлинения — по отношению к длине рабочей части (1 ) образца. Ординаты этой диаграммы дают механические характеристики материала  [c.35]


На диаграмме наносятся механические характеристики материала истинное сопротивление разрушению при растяжении Sji, сопротивление срезу предел текучести и истинный сдвиг. е .чх в процентах.  [c.438]

Кроме указанных выше механических характеристик материала, с помощью диаграммы растяжения можно определить также его энергетические характеристики.  [c.135]

Целью испытания на растяжение является определение механических характеристик материала. При испытании автоматически записывается диаграмма зависимости между растягивающей образец силой Р и удлинением образца А/. По очертанию она похожа на диаграмму, представленную на рис. 11.8.  [c.31]

Чтобы получить механические характеристики материала, диаграмму, снятую при испытании образца, нужно перестроить в условную диаграмму растяжения в координатах (е, а), не зависящих от абсолютных размеров образца (рис. 2.21). Для этого все ординаты и абсциссы на диаграмме в координатах (А/, К) (см. рис. 2.20) необходимо разделить соответственно на начальную расчетную длину 1а и начальную площадь поперечного сечения Ло образца (рис. 2.22, а).  [c.168]

Некоторые пластичные материалы (например, среднеуглеродистая сталь, дюралюминий) дают при испытании на растяжение диаграмму, не имеющую площадки текучести. Для таких материалов вводят понятие об условном пределе текучести как о напряжении, при котором остаточная пластическая деформация составляет 0,2%, это напряжение (механическую характеристику материала) обозначают (в специальной и в справочной литературе зачастую обозначения физического и условного предела текучести не разграничивают, применяя общее обозначение о ).  [c.330]

Однако диаграмма растяжения в координатах Р, А1 зависит от размеров испытуемого образца, его длины и площади поперечного сечения. Для получения механических характеристик материала эту диаграмму перестраивают в систему координат а, . Напряжение а = P/Fo, где Fо - площадь поперечного сечения образца до испытания продольная деформация е = Д///о, где 1о - длина расчетного участка образца до испытания. Так как величины Fq и 1о постоянны, диаграмма а = /(е) имеет тот же вид, что и Р=/(Д/) и отличается от нее масштабами. Диаграмма ст = = / (s) характеризует свойства испытуемого материала и носит название диаграммы растяжения.  [c.146]

Как видим, свойства среды могут быть схематизированы -различным образом в зависимости от свойств реального материала и тех задач, которые ставит перед собой исследователь. Существенно отметить, что во всех случаях при этом мы отвлекаемся от физических процессов, обусловливающих тот или иной вид диаграммы растяжения. Мы не интересуемся особенностями поведения кристаллической решетки, вопросами развития дислокаций и т. д. Мы фиксируем только внешнюю суммарную сторону этих микропроцессов, проявляющуюся в численных значениях механических характеристик материала и в характере диаграммы растяжения.  [c.16]


Наконец, диаграмма на рис. 12 дает нам возможность установить еще одну механическую характеристику материала, связанную с его сопротивлением ударам ). Это сопротивление оказывается тем большим, чем больше работа, которую нужно затратить, чтобы разорвать образец. Поэтому в качестве характеристики способности материала сопротивляться действию внезапного приложения нагрузки можно взять величину работы, которую надо затратить на растяжение образца до предела упругости или до разрыва. Оказывается, что эта работа в определенном масштабе выражается площадью диаграмм растяжения рис. 12).  [c.43]

К настоящему времени разработана расчетно-экспериментальная методика [38], позволяющая получать из кинетической диаграммы вдавливания шарового индентора стандартную диаграмму одноосного растяжения с последующим определением механических характеристик материала. Конкретный вид связи между интенсивностями напряжений S и деформацией е, соответствующий экспериментальной диаграмме Р - h, устанавливается численным решением методом конечных элементов осесимметричной упругопластической задачи с переменной границей контакта. Установление зависимости между напряжениями и деформациями по разработанному алгоритму позволяет идентифицировать механические характеристики как в упругой, так и в упругопластической областях деформации.  [c.78]

Для получения удельных механических характеристик материала, не зависящих от размеров образцов, диаграмму растяжения строят в координатах растягивающее напряжение а - относительное удлинение 5, где o=P/F , и Ь=А1/1 , Р - сила (нагрузка) растяжения, - начальная площадь поперечного сечения, А1 - абсолютное удлинение,  [c.81]

Условной диаграммой растяжения на практике пользуются для определения механических характеристик материала. Диаграммой истинных напряжений, учитывающей действительные поперечные сечения образца на всех этапах его испытания, пользуются в металловедении при определении характеристик пластичности материала.  [c.31]

Из диаграммы растяжения помимо механических характеристик материала, полученных ранее, можно извлечь еще одну характеристику, которая позволит нам судить о способности материала сопротивляться ударным нагрузкам. Это сопротивление оказывается тем большим, чем больше величина работы, затрачиваемая на разрыв образца. Для  [c.35]

Каким механическим характеристикам материала соответствуют точки А, В, С, О на диаграмме растяжения, показанной на рис 101 (стр. 174).  [c.164]

Рассмотрим построение полной диаграммы в координатах о , (фиг. 395). Предположим, что механические характеристики материала — пределы прочности при растяжении и сжатии и пределы текучести  [c.608]

Работа деформации. Кроме названных уже характеристик механических свойств материала диаграмма растяжения дает возможность определить еще и энергетические его характеристики.  [c.97]

Форма огибающей предельных кругов Мора зависит от свойств материала и является его механической характеристикой, такой же, как, например, диаграмма растяжения. Если огибающая предельных кругов для материала дана, можно при любом заданном напряженном  [c.266]

Диаграмма растяжения содержит гораздо больше информации о свойствах материала, чем определяется по ГОСТу 1497 и др. При оценке механических характеристик металла при диагностировании аппарата и в исследовательских работах эта информация должна извлекаться по возможности более полно. Это дает ряд тонких характеристик материала, реагирующих на такие изменения в структуре, которые, не меняя стандартных, параметров (а , Og, й, v /), сказываются, например, на склонности к хрупкому разрушению, усталостной прочности и т.п.  [c.284]

Диаграмма растяжения хрупкого материала (рис. 224) значительно отличается от диаграммы для пластичного материала. Площадка текучести отсутствует разрушение образца происходит при весьма малых остаточных деформациях, без образования шейки. Основной механической характеристикой является предел прочности.  [c.220]


Часто встречаются и имеют большое практическое значение случаи сочетания основных деформаций, когда в поперечных сечениях возникают и нормальные и касательные напряжения, распределенные неравномерно и по разным законам. Для таких случаев опытное определение величин, характеризующих прочность, невозможно, поэтому при оценке прочности детали приходится основываться на механических характеристиках данного материала, полученных из диаграммы растяжения.  [c.270]

Диаграмма растяжения позволяет определять не только механические или прочностные, но и энергетические характеристики материала. Величина площади диаграммы есть работа, которую затрачивают на разрыв образца.  [c.56]

Форма огибающей предельных кругов Мора зависит от свойств материала и является его механической характеристикой, такой же, как, например, диаграмма растяжения. Если огибающая предельных кругов для материала дана, можно при любом заданном напряженном состоянии определить коэффициент запаса. Для этого надо по заданным напряжениям вычертить наибольший из трех кругов Мора, а затем, хотя бы графически, установить, во сколько раз следует увеличить а и аз, чтобы увеличенный круг касался предельной огибающей.  [c.355]

Форма огибающей предельных кругов Мора зависит от свойств материала и является его механической характеристикой, такой же, как, например, диаграмма растяжения.  [c.301]

Было обнаружено, что, вследствие обратимой адсорбции материалом поверхностно-активных веществ из окружающей среды, облегчается упругая и в особенности пластическая деформация и разрушение материала. Объясняется это явление так. При растяжении монокристалла металла образуются микрощели с радиусом кривизны в вершине порядка нескольких А если при этом деформируемый образец помещен в жидкость с поверхностно-активными веществами, происходит проникновение адсорбционных слоев молекул из жидкости в указанные микрощели. В упругой области микрощели при разгрузке смыкаются. Такое поведение материала проиллюстрировано на рис. 4.39, на котором изображены диаграммы напряжений для монокристалла олова. Малая добавка олеиновой кислоты к вазелиновому маслу снижает все механические характеристики в чистом вазелине свойства олова такие же, как и в воздушной среде. Существует оптимальный процент содержания по-  [c.274]

Экспериментальное изучение поведения материалов под нагрузкой при линейном растяжении или сжатии на машинах, имеющихся в лабораториях испытания материалов, не встречает затруднений. Полученные в результате экспериментов диаграммы растяжения или сжатия дают наглядное представление о сопротивлении материала упругому и пластическому деформированию и позволяют определить такие важные для оценки прочности и назначения допускаемого напряжения механические характеристики, как предел текучести и предел прочности или временное сопротивление материала.  [c.127]

Основные механические характеристики сопротивления материала деформации и разрушению модуль Юнга, коэффициент Пуассона, модуль сдвига, предел пропорциональности, предел упругости, а также пределы текучести и прочности — рассчитывают по определенным точкам на диаграмме деформации, например по диаграмме растяжения металлов для условных (1) и истинных (2) напряжений (рис. 29).  [c.87]

Диаграмма деформирования ао(ёо) является характеристикой материала и устанавливается экспериментально. Для этого обычно испытывают материал на одноосное растяжение и последующее сжатие. Образцы растягивают до различных значений ёо и затем разгружают. Затем из них вырезают образцы на сжатие таким образом, чтобы сжатие происходило в направлении предшествовавшего растяжения. При испытании на сжатие определяют условный предел текучести оо (обычно при допуске на интенсивность пластической деформации 0,002) Для достаточно точного определения оо рекомендуется производить испытание с использованием механических тензометров Записав согласно уравнениям (1.85) приращение продольной деформации при осевом растяжении вдоль оси Х, получаем  [c.27]

Инженерная практика давно уже выявила преимущества использования условных напряжений перед истинными при исследовании механических свойств материалов. Так, известная величина — временное сопротивление — на условной диаграмме растяжения является одной из основных характеристик конструкционного материала (входящей в его технический паспорт).  [c.172]

Как уже отмечалось, основным результатом испытания на растяжение является диаграмма нагрузка — удлинение, по которой рассчитывают большинство характеристик механических свойств. Многие из них соответствуют отдельным точкам диаграммы. Следовательно, вся диаграмма в целом служит наиболее полной характеристикой материала. Поэтому прежде чем рассматривать методику расчета отдельных механических свойств и анализировать их смысл, целесообразно ознакомиться с общими закономерностями изменения нагрузки (напряжения) в функции деформации при растяжении различных металлов и сплавов.  [c.110]

Диаграмма растяжения стали. Рассмотрим диаграмму растяжения малоуглеродистой стали марки ВСтЗ, обладающей хорошо выраженными пластическими свойствами и широко применяемой в строительстве. Если испытывать образцы разных размеров, то получим различные диаграммы Р=/(А/)-Для определения обобщенных механических характеристик материала диаграммы строят в координатах напряжение — деформация с =/ (е), которые определяются по формулам  [c.56]


Ясно, что усилия и удлинения, соответствующие указанным характер-зависят не только от свойств материала, но и от абсолютных размеров образца. Для получения механических характеристик материала (исключения влияния абсолютных размеров образца) эту диаграмму перестраивают — все ординаты делят на начальную площадь поперечного сечения Р , а все абсциссы — на начальную расчетную длину В результате получают так называемую условную диаграмму растяжения в кординатах относительное удлинение е, нормальное напряжение о. Конечно, эта диаграмма (рис. 2.40) подобна исходной (по существу отличается от нее только масштабом). Условной эта диаграмма называется потому, что напряжения и деформации отнесены к начальным площади и длине образца.  [c.68]

ТИМ далее, что по найденным значениям ст др и сГд р построена Диаграмма предельных напряжений в координатах СТ , Од, как это условно показано на рис. 9.3 (верхняя линия). Точки Л и В диаграммы соответствуют предельным одноосному растяжению и однооснол у сжатию. Для хрупкого материала ордината точки А равна (Тд р, а для хрупко-пластичного материала равна (То,2р. Аналогично абсцисса точки В равна либо —Опчс либо —сто,2с- Знаки минус поставлены потому, что механические характеристики материала и 00,2с — величины существенно положительные, а главному напряжению 0.3, если это напряжение сжатия, приписывают знак минус.  [c.374]

Таким образом, несмотря на то, что влияние п редварительной деформации индивидуально и зависит от сплава и температурно-временнйх условий, для материалов реальных конструкций, работающих при малых упругопластических деформациях (до 0,2—0,5%), возможно принимать кривые ползучести и характеристики длительной прочности, не зависящими от предварительного пластического деформирования, а. мгновенные диаграммы растяжения и характеристики кратковременной прочности, не зависящими от предварительно накопленной деформации ползучести. Большие степени холодных пластических деформаций, возникающие на поврежденных слоях при механической обработке, оказывают значительное влияние на характеристики прочности и пластичности при длительном статическом разрушении. Снижение сопротивления длительному статическому разрушению и способности к пластическому деформированию материала, наклепанного при механической обработке (фрезерование, шлифование абразивом), являются в ряде случаев причиной образования статических трещин в поверхностных слоях деталей, работающих при высоких температурах.  [c.36]

Материал испытали на растя-мсение, получили приведенную справа диаграмму и определили по ней все основные механические характеристики. В конструкции детали из этого материала будут работать как на растяжение, так и на сжатие. Какие дополнительные испытания нужно провести  [c.129]

Испытательные машины состоят из приводного устройства, обеспечивающего плавное деформирование образца, и силоизмерительного механизма, с помощью которого измеряется сила сопротивления образца создаваемой деформации. По принципу действия приводного устройства различают машины с механическим и гидравлическим приводом. Гидравлический привод обычно применяется у машин большой мощности, предназначенных для испытания от 10-10 до 100-10 Н и выше. По конструкции силонзмерителя машины разделяются на машины с рычажным силоизмерителем и силоизмерите-лем, работающим по принципу измерения гидростатического давления [10]. На машинах с гидравлическим приводом труднее поддерживать заданную скорость деформирования образца, чем при использовании механического привода. По мере увеличения сопротивления материала образца деформированию растет давление масла в рабочем цилиндре. При этом усиливается просачивание жидкости через зазор между цилиндром и поршнем и скорость деформирования уменьшается. Для ее поддержания на постоянном уровне необходимо увеличивать подачу жидкости в цилиндр пропорционально ее утечке. Этот недостаток машин с гидравлическим приводом существен. Следует отметить, что в разрывных машинах рычажного типа (например, ИМ-4Р, ИМ-12Р и Р-5) обеспечивается необходимая скорость нагружения и запись диаграммы растяжений производится в большом масштабе, что увеличивает точность определения (То,2- Поэтому применение этих машин предпочтительнее при испытании образцов из основного металла. Гидравлические машины с успехом применяются при испытании сварных образцов, для которых сдаточной характеристикой является временное сопротивление разрыву.  [c.16]

Различают два вида малоциклового (упругопластического) яагружения жесткое, когда постоянной в цикле поддерживается заданная амплитуда деформаций, и мягкое — с поддержанием заданной амплитуды нагрузки (напряжений). Как правило, и в том, и в другом случае имеет место изменение знака действующих на-лряжений, т. е. деформирование осуществляется как в области упругопластического растяжения, так и упругопластического ожатия, причем в первом случае а О, а во втором (У < 0. Имея 3 этом случае характеристики механических свойств материала Ру ш Е ш диаграмму циклического деформирования для продольной деформации (петлю пластического гистерезиса в координатах  [c.119]

Расчёт плоских спиральных заневоленных пружин [4], [17]. При расчёте следует руководствоваться диаграммой истинных напряжений пружинной ленты при растяжении (фиг. 39) предполагается, что материал имеет при растяжении и сжатии одинаковые механические характеристики. В сечении ленты на радиусе р(р1<р<р2) наибольшее относительное удлинение в крайнем волокне ленты  [c.896]

Для установления основных механических характеристик материалов в машиностроении проводят испытания образцов на простейший вид нагружения — испытания на разрушение при растягивающей нагрузке. Порядок испытаний и определяемые величины регламентированы ГОСТ 1497—73. Результатом таких испытаний является диаграмма растяжения образца, которую принято на.нывать в сопротивлении материалов диаграммой состояния материала.  [c.138]

Расчет плоских спиральных заневоленных пружин [4], [17]. При расчете следует руководствоваться диаграммой истинных напряжений пружинной ленты при растяжении (фиг. 42) предполагается, что материал имеет при растяжении и сжатии одинаковые механические характеристики. В сечении ленты  [c.649]


Смотреть страницы где упоминается термин Диаграмма растяжения. Механические характеристики материала : [c.721]    [c.259]    [c.10]    [c.192]   
Смотреть главы в:

Сопротивление материалов  -> Диаграмма растяжения. Механические характеристики материала

Сопротивление материалов Издание 13  -> Диаграмма растяжения. Механические характеристики материала



ПОИСК



Диаграмма диаграмма характеристик

Диаграмма растяжения

Диаграмма характеристик

Материал характеристики механические

Материалы — Характеристики

Механическая характеристика



© 2025 Mash-xxl.info Реклама на сайте