Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Удаление геометрических объектов

Удаление геометрических объектов  [c.133]

Это обстоятельство приводит к необходимости дополнения евклидовой плоскости новыми элементами, названными несобственными, или бесконечно удаленными. Такое присоединение приводит к образованию нового геометрического объекта — проективной плоскости.  [c.343]

Массивы элементов в эскизах легко создаются и быстро обрабатываются системой. Однако такие массивы обладают одним существенным недостатком копии объектов соверщенно не связаны друг с другом. В данном случае пазы представляют собой набор независимых геометрических объектов. Это обстоятельство делает невозможным быстрое редактирования таких массивов. Единственный способ изменения массива в эскизе - это удаление всех объектов кроме исходного и повторное создание массива с другими параметрами.  [c.298]


Размеры объектов очень важны и в вопросе образования резких теней, существование которых является одним из основных аргументов в пользу лучевых представлений оптики (см. 1). Как ясно из 37, при относительно небольших расстояниях от объекта до точки наблюдения (дифракция Френеля) ширина области вблизи геометрической тени, где наблюдаются дифракционные полосы, примерно равна радиусу первой зоны Френеля в случае плоской волны (бесконечно удаленный источник) радиус этой зоны г = (/— рас-  [c.273]

Структурная схема графической системы показана на рис. 5.30. Функции обработки запросов пользователей, содержащихся в прикладных программах, выполняются специальной программой — лингвистическим процессором, который преобразует описания геометрии объектов проектирования, заданные в прикладных программах, в принятую форму. Преобразования геометрической информации выполняются геометрическим процессором, который включает программные модули выполнения таких операций, как построение проекций, сечений, разрезов, удаление невидимых линий при построении проекций, формирование структур данных, принятых в системе.  [c.175]

Хорошо известно, что любая локационная система служит для получения информации об удаленном объекте. Эта информация доставляется локационным сигналом и извлекается из него в результате специальной обработки. Главной особенностью всех локационных систем является то, что принимаемый ими сигнал не создается наблюдаемым объектом специально для передачи необходимой информации, а является лишь результатом его собственного излучения (пассивная локация) или возникает вследствие отражения от поверхности объекта зондирующего излучения (активная локация). В зависимости от того, какое используется локационное излучение (различные диапазоны электромагнитных волн, ультразвук, корпускулярные потоки — электроны, нейтроны и т. д.), может быть получена та или иная информация об объекте (его координаты, скорость, геометрические параметры, оптическое изображение, характеристики поверхности, состав вещества, из которого состоит объект и т. п.). При этом эффективность самой локационной системы определяется, с одной стороны, объемом получаемой ею информации, скоростью и точностью, с которыми эта информация получается, а с другой — тем, насколько технически просто удается реализовать данную локационную систему.  [c.4]

При использовании растровых дисплеев, подобных телевизионному монитору, можно построить очень реалистические изображения материальных объектов. Для построения таких изображений необходим аппарат удаления невидимых поверхностей и определения яркости ( затенения ) видимых поверхностей. Основным аппаратом удаления невидимых линий является алгоритм построчного сканирования, в котором полутоновое изображение для вывода на телевизионный монитор формируется последовательно, строка за строкой. Разработано несколько подобных алгоритмов, в которых используются некоторые приемы предыдущих алгоритмов удаления невидимых линий. В частности, используется принцип построения изображения поочередным рассмотрением областей экрана вместо анализа расположения элементов объекта, а для разрешения сложных ситуаций используются контролируемые недетерминированные методы. Кроме того, для увеличения эффективности алгоритмов определения закрытых поверхностей используются два свойства растровых изображений, а именно связность растровых строк и геометрическое упрощение при переводе трехмерного пространства в двумерное.  [c.318]


Волны растяжения возникают в объектах типа стержня. Тогда частицы колеблются вдоль направления распространения волн и перпендикулярно к нему. Поверхностные волны обусловлены колебанием частиц со значительной амплитудой на поверхности тела и постепенным ее уменьшением при удалении частиц от поверхности. Если продольная волна падает перпендикулярно на плоскую границу раздела двух сред, обладающих различным акустическим сопротивлением, то одна часть ее энергии переходит во вторую среду, а другая отражается в первую. Доля отраженной энергии тем больше, чем больше разность акустических сопротивлений сред. Если продольная волна попадает на границу раздела двух твердых сред под углом, го отраженная и прошедшая волны преломляются и трансформируются в продольные и сдвиговые, распространяющиеся в первой и второй средах под различными углами. Законы отражения и преломления волн аналогичны законам геометрической оптики. Свойства упругих волн учитываются при разработке технологии и средств контроля изделий.  [c.58]

Однако иногда даже трехмерного каркасного представления проектируемого объекта оказывается недостаточно для надлежащего отображения сложных форм. Поэтому существуют различные методы, расширяющие возможности каркасного моделирования. Возможно, например, отображение внутренних, невидимых снаружи ребер объекта штриховыми линиями или вообще полное стирание скрытых линий. На рис. 4.5 показана для иллюстрации этой возможности та же деталь, что и на рис. 4.4, но без невидимых для наблюдателя линий. В результате изображение стало более упорядоченным и более наглядным. В одних САПР удаление скрытых линий происходит автоматически, в других пользователь должен сам указывать линии, подлежащие стиранию. Каркасная модель может приобрести еще более эстетичный вид, если воспользоваться при геометрическом моделировании средствами отображения поверхностей, позволяющими создать у наблюдателя ощущение монолитности представленного на экране объекта. Однако при этом в памяти ЭВМ модель по-прежнему хранится в каркасном отображении.  [c.74]

Теория формирования оптического изображения. Простые правила, которые следуют из элементарной геометрической оптики, позволяют по отдельным геометрическим лучам построить изображение наблюдаемого удаленного объекта в фокальной плоскости приемного объектива. Однако эти правила не позволяют учесть возможное искажение изображения за счет взаимодействия оптической волны со средой между объектом и приемным объективом. Такая возможность обеспечивается только при использовании современной теории формирования оптического изображения [2],. сущность которой состоит в следующем. Если вместо функции взаимной когерентности (2.30) рассмотреть ее фурье-образ  [c.72]

Жена схема критического векторного синхронизма, в которой используется цилиндрическая фокусировка накачки. Если объект удален от кристалла, то в плоскости фокусировки накачки разрешающая способность определяется дифракцией на входной апертуре, а в перпендикулярном направлении — расходимостью накачки. Для близкого объекта разрешающая способность ограничена геометрическими аберрациями [13, 14, 16, 17].  [c.247]

Когда омическая система телескопическая, величины g н 60 из линейных становятся угловыми и оказываются соответственно равными разностям направляклцих косинусов ц —цо, v, где цо — направляющий косинус главного луча (или любого луча по выбору конструктора), а частоты / н превращаются в обратно-угловые. Если первые (I и v выражены в радианах, то и вторые и выражены в рад" предельной частоты R для геометрической ЧКХ формально нет, но нет смысла брать для слишком большие значения (они приводят практически к нулевым значениям К), а следует остановиться на значениях, близких к 1/2/, где z — радиус наименьшего кружка рассеяния, соответствующегр рассматриваемой бесконечно удаленной точки объекта г должно быть выражено в миллиметрах).  [c.604]

Машинная графика решает задачи, связанные с универсальными преобразованиями графической информации, не зависящими от прикладной специфики САПР, и включает в себя средства отображения графической информации и средства гео.метрического моделирования. Геометрическое моделирование основано на получении, преобразовании и использовании геометрических моделей. Геометрическая модель — это математическое или информационное описание геометрических свойств и параметров объекта моделирования. В зависимости от способов описания геометрических объектов (на плоскости или в пространстве) различают двухмерную и трехмерную машинную графику. Базовыми преобразованиями графической информации являются элементарные операции с геометрическим объектом сдвиг, поворот, масштабирование, мультиплицирование (размножение изображения объекта), выделение окна (выделение фрагмента изображения для работы только с этим фрагментом). Более сложные преобразования графической информации связаны с построением проекций, сечений, удалением невидимых линий и др. В общем случае геометрическое моделирование применяется для описания геометрических свойств объекта проектирования (формы, расположения в пространстве) и решения различных геометрических задач — позиционных и метрических. Позиционные задачи связаны с определением принадлежности заданной точки замкнутой плоской или трехмерной области, пересечения или касания плоских или объемных фигур, оценкой минимального или максимального расстояния между геометрическими объектами и др. Такие задачи возникают, например, при контроле топологии БИС. Метрические задачи связаны с определением площадей, объемов, масс, моментов инерции, центров масс н др.  [c.228]


ДИФРАКЦИЯ ЗВУКА — отклонение распространения звука от законо) геометрической акустики, обусловленное его волновой природой. Результаты Д. з,— расхождение У 3-пучков при удалении от излучателя или после прохождения через отверстие в экране, загибание звуковых волн в область тони позади препятствий, больших по сравнению с длиной волны л, отсутствие тени позади препятствий, малых по сравнению с к, и т. п. Звуковые поля, создаваемые дифракцией исходной волны на препятствиях, помещённых в среду, на неоднородностях самой среды, а также па неровностях и неоднородностях границ среды, наа. рассеянными полями (см. Рассеяние звука). Для объектов, на к-рых происходит Д. 3., больших по сравнению с X, степень отклонений от геом. картины зависит от значения волнового параметра Р=Укг11), де D — поперечник объекта (папр., поперечник У 3-излучателя или пре-  [c.667]

Макс. соответствие изображения объекту достигается, когда каждая его точка изображается точкой. Иными словами, после всех преломлений и отражений в оптич. системе лучи, испущенные светящейся точкой, должны пересечься в одной точке. Одпако это возможно не при любом расположении объекта относительно системы. Напр., системы, обладающие осью симметрии [оптической осью), дают точечные И. о. лишь тех то-аек, к-рые находятся на небольшом удалении от оси, в т. и. параксиальной области. Применение законов геометрической onmuKit позволяет определить положение И. о. любой точки из параксиальной области для этого достаточно знать, где расположены кардинальные точки оптической системы.  [c.113]

В 1—3 показано, что ири переводе изображения ИК-объекта, находящегося на бесконечности, геометрические аберрации (кроме дисторсии) отсутствуют при произвольных апертурах преобразования и произвольном положении ИК-объекта. Поэтому преобразование изображения бесконечно удаленного объекта заслуживает самостоятельного рассмотрения. В ситуациях, когда плоская ИК- волна распространяется в направлении, перпендикулярном линейному источнику, а также при неперпендикулярных, но близких к оптической оси в пространстве объектов Zir направлениях и малых апертурах преобразования, вопрос фактически решен ранее (предыдуш,ие два раздела параграфа). Попытаемся обобщить полученные результаты на случай произвольного распространения ИК-волны и произвольных апертур. Задача сводится к анализу взаимодействия в нелинейной среде цилиндрической волны накачки и плоской волны ИК-излучения с волновым вектором kir. Из формулы (4.60) следует, что геометрическое изображение на суммарной частоте расположено на бесконечности. Функция Грина в этом случае принимает вид плоской волны, волновой вектор которой определяет направление наблюдения. Фаза энспоненты в подынтегральном выражении в (2.27) может быть записана следующим образом  [c.107]

Геометрические параметры экспериментальной установки подбирались таким о азом, чтобы на объект попадало достаточно большое число поперечных мод. Сфокусированные голограммы регистрировались с единичным увеличением и после фотохимической о аботки отбеливались. Производилась также контрольная регистрация голограмм с нерассеянным опорным пучком (в схеме рис. 21, 5 удален диффузор). Восстановление изображений проводилось в излучении того же лазера и в белом свете лампы накаливания. В случае, когда голограммы сфокусированных изо а-жений регистрировались в многомодовом излучении без диффузного рассеяния опорного пучка, наблюдались искажения восстановленных изображекшй, имеющие вид темных пяген (разрывов), количество и густота которых зависела от числа генерируемых поперечных мод. Однако в отличие от случая регистрации в тех же условиях голограмм Френеля, изменение позиции наблюдателя (смещение точки наблюдения) при реконструкции практически не приводит к изменению конфигурации разрывов в восстановленном изображении - картина привязана к шюскости голограммы сфокусированного изо ажения.  [c.51]

Л0СКИ6 изображения пространственно протяженных предметов всегда передают геометрическую перспективу (определенное соотношение между размерами изображений предметов, лежащих на различном удалении). Например, на фотоснимке получается центральная проекция фотографируемых предметов с центром проекции в середине объектива, так как идущие через центр линзы лучи не отклоняются. Для получения правильного пространственного впечатления при рассматривании фотоснимка нужно, чтобы видимые глазом угловые размеры изображений предметов были такими же, как и при непосредственном наблюдении. Это условие выполняется, если рассматривать снимок одним глазом с такого расстояния, на каком (от пластинки) находился объектив при фотографировании. Для п-кратно увеличенных по сравнению с негативом фотоснимков это расстояние также следует увеличить в п раз. В большой аудитории (кинозал) такое условие выполняется для немногих мест. При рассматривании с неправильного расстояния фотография создает пространственное впечатление с искаженной перспективой при слишком большом расстоянии глубина снимка кажется увеличенной, а при слишком малом — уменьшенной. Искажение перспективы заметно и при непосредственном наблюдении в зри- тeльнyю трубу или бинокль при сильном увеличении все предметы и расстояния  [c.349]

Характер распространения вихревых токов в испытуемых объектах, а следовательно, и их отклики — обратное воздействие на электрические параметры датчика — зависят от частоты возбуждающего тока, от физических свойств материала испытуемого объекта, а именно его электропроводности и характера из.менения магнитной проницаемости, от геометрических факторов, т. е. размеров объекта (испытуемого изделия) и нарушения сплошности материала изделия, от взаимного расположения детали и катушки. Вследствие скин-эффекта плотность вихревьк токов убывает по мере удаления от поверхности. Чем выше частота возбуждающего поля, те.м интенсивнее убывает плотность вихревых токов по мере удаления от поверхности изделия.  [c.35]


Исходной информацией для перехода является описание геометрии. Пусть оно состоит из точек, линий и отсеков поверхности. Средства компьютерной графики позволяют изобразить модель на экране и указывать объекты модели в качестве аргументов для вызываемых операций. Так, например, можно подать команду "создать узел КЭМ" и указать (световым пером, "мышкой", другими устройствами графического ввода) в качестве места для него некоторую точку геометрической модели. Можно подать команду "создать конечный элемент" и указать определяющие его узлы КЭМ. Аналогично выполняется поодиночная модификация или удаление объектов КЭМ.  [c.100]


Смотреть страницы где упоминается термин Удаление геометрических объектов : [c.133]    [c.134]    [c.134]    [c.123]    [c.257]    [c.409]    [c.375]    [c.368]   
Смотреть главы в:

Моделирование конструкций в среде MSC.visual NASTRAN для Windows  -> Удаление геометрических объектов



ПОИСК



Объект геометрический

Удаление

Удаление объектов



© 2025 Mash-xxl.info Реклама на сайте