Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические (кратковременные) испытания при высоких температурах

I. Предварительные замечания. В 2.11 и 2.13 были описаны статические кратковременные испытания гладких образцов из различных материалов на растяжение и сжатие при комнатной температуре. Предыдущие параграфы настоящей главы содержат описание различных упругих и механических свойств материалов и оценку влияния различных факторов на эти свойства. Уже при этом обсуждении приходилось обращаться к результатам динамических испытаний (при определении сопротивляемости ударному воздействию и при оценке влияния скорости деформирования на различные свойства), кратковременных и длительных испытаний при высоких температурах (при определении предела длительной прочности и предела ползучести, а также при оценке влияния температурного фактора на различные свойства), длительных испытаний при переменных по величине и знаку нагрузках, длительных испытаний при комнатной температуре и постоянной нагрузке и при монотонно убывающей нагрузке. Приходилось, наряду с рассмотрением результатов испытания гладких образцов, обращаться и к анализу материалов испытаний образцов с надрезом указывалось, что, кроме непосредственного определения интересующих инженера свойств материала, существуют косвенные пути оценки этих свойств (при помощи определения твердости) отмечалось, что,  [c.298]


Методика механических испытаний при высоких температурах. Кратковременные испытания производятся на растяжение, твердость, кручение и удар, а долговременные — на ползучесть, длительную прочность и релаксацию.  [c.392]

Наибольшее распространение для оценки кратковременной прочности при высоких температурах получил метод испытания на растяжение (ГОСТ 9651 — 61) на разрывных или универсальных машинах с механической или гидравлической системой нагружения, соответствующих ГОСТу 7855—68. Удлинительные штанги для крепления образцов -должны обеспечивать их надежное центрирование. Нагревательное устройство должно равномерно нагревать образец  [c.123]

Методика механических испытаний при высоких температурах. Стали и сплавы, предназначаемые для работы при высоких температурах, подвергаются следующим механическим испытаниям 1) кратковременным, 2) на ползучесть, 3) на длительную прочность, 4) на релаксацию.  [c.360]

При кратковременных статических испытаниях, т. е. обычных механических испытаниях, при высоких температурах результаты их зависят от скорости деформации. Чем ниже скорость деформации, тем ниже предел прочности з , предел текучести и истинный предел прочности 5 и тем выше относительное удлинение п и сужение ф. Это объясняется разупрочнением сплавов под влиянием происходящих при высоких температурах явлений возврата и рекристаллизации. Поэтому кратковременные испытания металлов и сплавов, например, испытания на текучесть, производятся на специальных машинах, позволяющих осуществлять требуемую постоянную скорость деформации.  [c.360]

Кратковременные испытания не характеризуют механических свойств металла, находящегося длительное время под действием нагрузки при высоких температурах. Если в этих условиях нагружения металл нагрет до температуры, превышающей температуру его рекристаллизации или близкой к ней, то он может медленно пластически деформироваться (металл ползет ). Максимальное напряжение, которое не вызывает или вызывает весьма малую пластическую деформацию, лежит значительно ниже предела текучести, определенного в испытаниях при высокой температуре. Также резко снижается и предел прочности. Снижение прочностных характеристик тем больше, чем выше температура испытания и длительнее, в определенных пределах, время приложения нагрузки. Снижение прочности может быть очень значительным (табл. 12).  [c.141]


Основные критерии оценки жаропрочности (например, на срок 100 тыс. ч) предел длительной прочности — напряжение, при котором металл разрушается через 100 тыс. ч работы (испытания) при высокой (более 450 °С) температуре условный предел ползучести — напряжение, которое при рабочей температуре вызывает скорость ползучести металла Va = = 10- %/ч, что соответствует 1 7о-ной суммарной деформации за 100 тыс. ч (или Vu = = 10 мм/ч) стабильность структуры и кратковременных механических свойств при обычной и рабочей температуре в процессе расчетного срока эксплуатации.  [c.280]

Жаропрочность—это способность материала противостоять механическим нагрузкам при высоких температурах она определяется прочностными свойствами, получаемыми при кратковременных испытаниях на растяжение, а также сопротивляемостью ползучести и длительной прочностью материала.  [c.79]

Поэтому при высоких температурах определяют не только обычные механические характеристики при кратковременных испытаниях, но и характеристики при продолжительной работе.  [c.21]

Наблюдения за работой отдельных деталей машин, подвергаю-Ш.ИХСЯ длительным воздействиям статических нагрузок при высоких температурах, показали, что для расчета их на прочность недостаточно знать те нормальные характеристики механических свойств металла, которые определяются в результате кратковременных испытаний на растяжение при обычной комнатной или повышенной температурах.  [c.347]

Наблюдение за работой деталей и машин, подвергающихся длительным воздействиям статических нагрузок при высоких температурах, показали, что для расчетов их на прочность недостаточно знания характеристик механических свойств, которые определялись в результате кратковременных испытаний при обычной комнатной или повышенной температуре. Поэтому уже несколько лет применяются специальные методы и установки для испытания металлов на длительную прочность, на ползучесть и на релаксацию.  [c.252]

Механические свойства при высоких температурах (кратковременные испытания)  [c.265]

Фиг. 43. Механические свойства стали с 17% Сг и 1% N1 при высоких температурах (кратковременные испытания). Фиг. 43. <a href="/info/58648">Механические свойства стали</a> с 17% Сг и 1% N1 при <a href="/info/46750">высоких температурах</a> (кратковременные испытания).
Механические свойства сплава нимоник 95 при высоких температурах по данным кратковременных испытаний на растяжение при высоких температурах  [c.742]

W 0,3% Мп 0,6% Si остальное—кобальт. Термическая обработка старение отливок при 730—870° С в течение 50 час. для получения твердости = 6.5 ч-Ч-70. Максимальная твердость, равная Hrq= 32ч-42, достигается в результате старения при 800° С в течение 25 час. Отжиг проводится при 1150—1230°. Механические свойства сплава HS-23 при высоких температурах, полученные в результате кратковременных и длительных испытаний на растяжение, даны в табл. 53 и 54.  [c.754]

Механические свойства при высоких температурах различаются в зависимости от того, получены ли они при кратковременных или длительных испытаниях. Последние  [c.205]

Обычные методы кратковременных испытаний в условиях повышенных температур не дают возможности выявить действительные механические свойства сталей и не позволяют правильно судить об их прочности и пластичности. В связи с этим, выбирая допускаемые напряжения при высоких температурах, следует учитывать измеиения комплекса механических свойств, т. е. не только изменения предела ирочности, предела текучести, но и длительную прочность и склонность стали к ползучести, релаксации. При определении работоспособности стали в данных условиях необходимо учитывать также и ряд таких факторов, как склонность к тепловой хрупкости, графитизации, старению и пр.  [c.9]


Для жаростойкого чугуна, работаюш,его при повышенных температурах, механические свойства при комнатной температуре не отражают реальной прочности материала в условиях эксплуатации. Поэтому в тех случаях, когда чугун, помимо воздействия высоких температур, испытывает определенные нагрузки, необходимо проводить испытания на длительную прочность и ползучесть. Для сравнительной оценки механических свойств жаростойкого чугуна при повышенных температурах чаще всего пользуются данными кратковременных испытаний (табл. 35).  [c.200]

Длительное нагружение, в особенности, при высоких сходственных температурах (см. гл. 6) может оказывать сильное влияние на механические свойства. Ввиду большого практического значения этого вопроса и ввиду того, что по результатам кратковременных механических испытаний нельзя получить надежных данных о поведении материалов при длительном нагружении, применяют специальные методы механических испытаний испытания на замедленное разрушение при нормальных температурах, испытания на коррозию под напряжением, испытания на ползучесть, на релаксацию и на длительную прочность большей частью при повышенных температурах.  [c.143]

Под влиянием высокой температуры свойства металлов значительно изменяются, так что знание характеристик прочности и пластичности металла при нормальной (комнатной) температуре является уже далеко недостаточным для расчёта детали из этого металла, работающей при повышенной температуре. Вместе с тем, обычные методы кратковременных испытаний оказываются пригодными для определения механических характеристик металлов только при сравнительно невысоких температурных (например, для углеродистых сталей — до 300—350°, для легированных сталей — до 350- 00°, для цветных металлов — до "iO—150°). При более высоких температурах характеристики прочности и пластичности очень сильно зависят от продолжительности самого испытания. Вследствие этого при температурах выше 400 для сталей и 150 для цветных металлов определение таких, например, характеристик металла, как предел пропорциональности и предел текучести, является в значительной мере условны.м, а в некоторых случаях даже теряет свой смысл.  [c.792]

Механические свойства конструкционных материалов определяют экспериментально специальными механическими испытаниями образцов, причем вид механического испытания назначают в зависимости от условий нагружения детали, подлежащей изготовлению из данного конструкционного материала. Механические свойства стали определяют при статических, динамических и циклических режимах приложения нагрузок, а также при пониженных, нормальных или повышенных температурах. Испытуемые образцы можно нагружать по различным схемам (одноосное растяжение — сжатие, чистый или поперечный изгиб, кручение). В за-виси.мости от времени воздействия нагрузки на испытуемый образец испытания могут быть кратковременными или длительными. Почти все методы механических испытаний стали (за исключением метода испытания твердости) являются разрушающими, что исключает возможность стопроцентного контроля механических свойств деталей машин или элементов конструкций и обусловливает весьма высокие требования к точности механических испытаний образцов (или контрольных деталей).  [c.454]

Поэтому прочностные свойства в условиях длительного нагружения, т. е. при нагреве в условиях эксплуатации, оказываются ниже получаемых при кратковременном нагружении в обычных испытаниях механических свойств. Снижение свойств тем больше, чем длительнее выдержка и выше температуры испытания. Надо, однако, учитывать, что при очень длительном времени нагружения и очень высоких напряжениях металлы могут медленно деформироваться и при 20° С (так называемая, холодная ползучесть).  [c.163]

Применение этих материалов в основном идет по двум направлениям. Во-первых, жаропрочные стали и сплавы применяют в условиях кратковременной службы, например, в ракетах, спутниках и реактивной авиации, где время службы исчисляется от десятков минут до сотен часов. Во-вторых, они применяются в условиях долговременной службы, например, в паровых котлах и турбинах, двигателях внутреннего сгорания, газовых турбинах, атомных реакторах, печах, прессформах, оборудования нефтяной и химической промышленности и т. д., где длительность службы материала исчисляется сотнями тысяч часов. В соответствии с этим и механические испытания при высоких температурах разделяются на кратковременные и долговременные.  [c.392]

Изменение свойств материала, длительно работающего при высокой температуре, является следствием диффузионных, дислокационных процессов [25]. Сопоставление кинетики изменения механических свойств с тонкой структурой на разных стадиях ползучести для сплавов на никельхромовой основе — ЖС6КП, ЖС6У и ВЖЛ12У позволило выделить три стадии процесса повреждаемости. За время испытания, равное примерно 30% долговечности, предел кратковременной прочности, определенной при температуре длительного испытания, практически не изменяется, с увеличением времени длительного испытания до 30— 50% достаточно резко понижается предел прочности, через 50— 70% времени дальнейшее его понижение существенно затормаживается. Сохранение прочности на уровне исходного значения означает наличие в тонкой структуре когерентной связи частиц упрочняющей фазы с матрицей, вследствие чего пластическая деформация, происходящая путем перерезания дислокациями этих частиц, приводит к образованию сложных сверхструктур-ных дефектов упаковки вычитания (внедрения). С потерей когерентной связи процесс разупрочнения интенсифицируется, в структуре наблюдается сращивание частиц У-фазы, наличие, большого количества свободных дислокаций. Затухание кривой разупрочнения с увеличением времени испытания в известной 6 83  [c.83]


Рис. 9. Механические свойства стали 2X13 при высоких температурах кратковременные испытания на растяжение Рис. 9. <a href="/info/58648">Механические свойства стали</a> 2X13 при <a href="/info/46750">высоких температурах</a> кратковременные испытания на растяжение
Механические свойства стали типа 18-8, отвечающей примерно марке 0Х18Н9 при высоких температурах, приведены на рис. 18. Результаты испытания стали 1Х18Н9 на кратковременное растяжение при повышенных температурах иллюстрируются рис. 19.  [c.1279]

Кратковременные испытания на растяжение при высоких температурах (в вакууме) показали, что предварительная обработка н способ получения молибдена и его сплавов оказывают существенное влияние на механические свойства. Так, рекристалли-зационный отжиг заметно снижает предел прочности при комнатной и повышенных температурах и повышает пластичность в интервале 815—1100° (рис. 78). Даже раз-  [c.1319]

Рис. 21. Механические свойства стали типа 2X13 (0.18в/в Р 14,09в/о Сг 0,бУи Мп) при высоких температурах кратковременные испытания на растяжение Рис. 21. <a href="/info/58648">Механические свойства стали</a> типа 2X13 (0.18в/в Р 14,09в/о Сг 0,бУи Мп) при <a href="/info/46750">высоких температурах</a> кратковременные испытания на растяжение
Механические свойства при высоких температурах стали типа Х18Н12МЗТ (кратковременные испытания на разрыв)  [c.849]

Уже проведение кратковременных испытаний на растяжение при высоких температурах (в вакууме) показало, что предварительная обработка и способ получевия молибдена и его сплавов оказывает существенное влияние на характеристику механических свойств. Так, рекристаллизационный отжиг заметно снижает предел прочности при комнатной и повышенных температурах и повышает пластичность в интервале 815—1100° (рис. 67). Даже разница в условиях спекания порошкообразного молибдена — в вакууме или в водороде — связана с получением неодинаковых значе-  [c.881]

Уже проведение кратковременных испытаний на растяжение при высоких температурах в вакууме показало, что предварительная обработка и способ получения молибдена и его сплавов оказывают существенное влияние на характеристики механических свойств. Так, рекристаллизационный отжиг заметно снижает предел прочности при ко.мнатной и повышенных те.мпературах и повышает пластичность в интервале температур 815—I ЮО С (фиг. 175). Даже разница в условиях спекания порошкообразного молибдена (в вакууме или в водороде) оказывает определенное влияние на механические свойства. Сравнение кривых деформации образцов молибдена, изготовленных методом порошковой металлургии и путем плавки в вакуумной печи, показано на фиг. 176. При понижении температуры испытания влияние способа изготовления молибдена на ход кривых деформации проявляется особенно резко. Это послужило основанием к проведению серийных испытаний молибдена на растяжение при различных температурах (фиг. 177) оказалось, что критическая температура перехода молибдена из вязкого в хрупкое состояние (определялась в основном по значениям относительного сужения) достаточно высока, и это следует учитывать при конструктивных расчетах. Дальнейшие испытания показали также, что критическая температура зависит от скорости деформации, условий нагружения, величины зерна и наличия загрязнений, в первую очередь углерода, кислорода и азота, образующих с молибденом твердый раствор.  [c.764]

Изоляционные пленки на основе полиэфиров достаточно стойки к действию растворителей, выдерживают испытание на термопластичность при 200 °С, отличаются повышенной электрической прочностью, но механические характеристики их ниже, чем у поливинил-ацеталевых пленок. Основным недостатком этих проводов является низкая стойкость к тепловому удару, т. е. кратковременному воздействию высоких температур, что обусловлено химической природой полимера. В связи с этим провода марки ПЭТВ не рекомендуется использовать в электрооборудовании, режим работы которого предполагает наличие токовых перегрузок.  [c.250]

С учетом бесчисленного множества возможных комбинаций параметров а, к, т, г экспериментальное обоснование функциональных зависи.мостей (1.3) и (1.4) оказывается связанным со значительными принципиальными и методическими трудностями. В соответствии с этим возникает задача о выборе основных характеристик механического поведения материалов при циклическом нагружении в неупругой области и базовых экспериментов с учетом отсутствия (нормальные или повышенные температуры) и на.личия (высокие температуры) температурно-временных эффектов (рис. 1.2). Исходными для выбора параметров уравнений состояния являются результаты кратковременных и длительных статических испытаний. Данные этих испытаний позволяют установить пределы текучести От, характеристики упрочнения (показатель упрочнения при степенной и модуль упрочнения Gт при линейной аппроксимации / (а, е)) и пластичность (относительное сужение ф - или логарифмическая деформация е/,-). По данным д.лительных статических испытаний определяется скорость ползучести <1е1с1х, длительная прочность Сты и пластичность д.ля данной температуры Ь и времени т. Параметры уравнений состояния при малоцикловом деформировании наиболее целесообразно определять при нагружении с заданными амплитудами напряжений — мягкое нагружение. В качестве основных характеристик сопротивления деформированию в заданном А-полуцикле при этом используются ширина петли и односторонне накопленная пластическая деформация е р При этом ширина петли определяется как произведение ширины петли в первом полуцикле к = 1) на безразмерную функцию чисел циклов Р к)  [c.10]

Аналогичные данные получены при кратковременных испытаниях механических свойств при повышенных температурах. Для электрошлакового металла в то ке время характерно небольшое снижение прочностных свойств. На рис. 65 приведены полученные нами данные по влиянию ЭШП на горячую пластичность некоторых нержавеющих сталей, оцененную методом горячего скручивания. Полученные данные, а также производственный опыт показывают, что электрошлаковый металл имеет более высокую горячую пластичность и шире интервал температур удовлетворительной пластичности, что связано с повышением чистоты и гомогенности металла, В частности, в работе [162] было установлено, что иглы феррита в микроструктуре отожженных сталей ЭИ961  [c.221]

Из перечисленных в табл. 5 термопар в лабораториях предпочитают пользоваться преимущественно термопарами из неблагородных металлов, что объясняется экономическими соображениями и отчасти большей электродвижущей силой таких термопар. Никель-нихромовые термопары могут быть рекомендованы для кратковременных механических испытаний при температурах до 1000°, для длительных — до 900°. Что касается широко известных хромель-алюмелевых термопар, то многолетний опыт показал их полную пригодность для использования при длительных испытаниях при температурах 400—800°, при кратковременных — до 900°. Для более высоких температур лучше применять плати-но-платинородиевые термопары, хотя точность отсчетов температуры при этом несколько уменьшается вследствие относительно небольшой электродвижущей силы пары Р1/Р1-НЬ.  [c.27]


Рекристаллизационная термическая обработка ферритного низколегированного никелевого чугуна с шаровидным графитом, фиксирующая в металлической основе 6—30 % аустенита, заключается в кратковременном нагреве до 770-800 °С, вьщержке в течение 0,3-1,2 ч и ускоренном охлаждении (30-50 °С/мин) до 350-300 С, а затем на воздухе. Вьщеляющийся по границам ферритных зерен аустенит устойчивый при 220 °С, локализует присутствующие в этих местах сульфиды, фосфиды, карбиды и другие хрупкие составляющие важно не допускать распада аустенита путем увеличения времени вьщержки при нагреве (рис. 3.5.27). Механические свойства чухуна остаются практически неизменными (табл. 3.5.36), возрастает на 50 % критический коэффициент интенсивности напряжений К ,, а также скорость роста усталостной трещины за один цикл MIN) в зависимости от что приближает этот чугун по уровню вязкости разрущения при низких температурах к перлитной кованой стали 25ХНЗМФА (табл. 3.5.37). Высокий уровень вязкого разрущения ферритно-аустенитного чугуна (бТ сохраняется при низкотемпературных испытаниях даже после нейтронного облучения при температуре 285-295 °С с интенсивностью (3,5-4,3)10 нейтрон/мV энергией 0,5 МэВ (табл. 3.5.38).  [c.638]


Смотреть страницы где упоминается термин Механические (кратковременные) испытания при высоких температурах : [c.248]    [c.814]    [c.21]    [c.871]    [c.703]    [c.107]    [c.201]    [c.898]    [c.485]   
Смотреть главы в:

Прочность паровых турбин Изд.2  -> Механические (кратковременные) испытания при высоких температурах



ПОИСК



Механические испытания

Механическое испытание при высоких температурах

Температура высокая

Температура испытаний



© 2025 Mash-xxl.info Реклама на сайте