Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные уравнения теории теплопередачи

Основные уравнения теории теплопередачи  [c.10]

Третья глава содержит основные сведения по теории теплопроводности, необходимые для исследования температурных полей и соответствующих им тепловых напряжений в квазистатической постановке. В ней рассматриваются способы теплопередачи на поверхности тела, выводятся основные уравнения стационарной и нестационарной теплопроводности при отсутствии и наличии источников тепла, формулируются идеализированные граничные условия и исследуются отдельные задачи о стационарных и нестационарных температурных полях в пластинах, дисках и цилиндрах, имеющие практическую целенаправленность и иллюстрирующие применение основных методов теории теплопроводности.  [c.8]


В частности, изучаются некоторые вопросы теории вязких течений реагирующих газовых смесей, выводятся общие уравнения теории пограничного слоя, причем рассматриваются как ламинарный, так и турбулентный случаи. Результаты, относящиеся к расчету теплопередачи для двумерных и трехмерных форм, получены с учетом диссоциации газа в пограничном слое, химических реакций, отличных от диссоциации, эффекта переноса массы, оплавления поверхности, взаимодействия между газом в пограничном слое и поверхностью. Главное усилие было направлено на то, чтобы дать основные идеи исследователям, стремящимся вырваться за пределы  [c.11]

Приведенное выше утверждение Мак-Адамса относится, конечно, только к конвективному теплообмену, поскольку в старой теории теплопроводность и излучение рассматриваются совсем иначе, чем конвекция. В то же время соответствующее утверждение в новой теории справедливо для всех трех видов теплопередачи теплопроводности, излучения и конвекции. В новой теории все три вида теплопередачи рассматриваются одинаково, как процессы переноса, и описываются одним основным уравнением. Это основное уравнение, являющееся краеугольным камнем новой теории теплопередачи, имеет следующий вид  [c.10]

В новой теории термическое сопротивление является введением (вовсе не обязательным), которое в лучшем случае приводит к использованию концепций пропорциональности и линейности. Новая теория в отличие от старой не должна быть основана на концепции пропорциональности или Комбинации концепций пропорциональности и линейности, как в электричестве или сопротивлении материалов. Она должна быть основана на так называемой "нелинейной концепции , которая позволяет эффективно проанализировать все процессы без ограничения. Именно на этой концепции и основана новая теория теплопередачи нелинейная концепция содержится в основном уравнении новой теории теплопередачи  [c.102]

Однако при v/a- l значительное влияние молекулярной теплопроводности при свободной конвекции распространяется далеко за область пристенного слоя, в котором происходит более или менее упорядоченное движение жидкости, обусловленное молекулярной вязкостью. Поэтому, сохраняя обычное для теории свободной конвекции представление о решающем влиянии молекулярного переноса тепла на процесс теплопередачи, следует считать, что поле скоростей в пределах большей части теплового пограничного слоя зависит в основном от инерционных сил. Опуская на этом основании в уравнении движения член, учитывающий влияние молекулярной вязкости, получаем систему уравнений в векторной форме  [c.213]


Быстрое развитие современной техники в последние годы оказало значительное влияние на преподавание теплообмена излучением в высшей школе. Традиционные курсы теплообмена излучением, в которых рассматривались главным образом прозрачные среды, пришлось расширить и включить в них изложение вопросов, касающихся поглощающих, излучающих и рассеивающих сред, а также взаимодействия излучения с другими видами переноса тепла. Перенос излучения в поглощающих, излучающих и рассеивающих средах интенсивно изучался астрофизиками при исследовании звездных атмосфер. Кроме того, задачи, описываемые теми же уравнениями переноса, изучались физиками, работающими в области теории переноса нейтронов. В технике интерес к этой проблеме значительно вырос в последнее десятилетие. Хотя разработаны новые методы и некоторые математические методы, используемые в других отраслях науки для решения уравнения переноса, уже применяются при решении задач теплообмена излучением, представляется полезным дать единое и систематическое описание всех новых достижений, легко доступное для аспирантов, научных работников и инженеров. В области инженерных приложений необходима книга, представляющая собой исчерпывающее, систематическое и единое изложение фундаментальных положений, основной теории и различных методов решения задач переноса излучения не только в прозрачных, но и в поглощающих, излучающих и рассеивающих средах, а также взаимодействия излучения с другими видами теплопередачи. Поэтому эта книга была задумана как учебное пособие по курсу переноса излучения, а также как справочник для научных работников и инженеров, работающих в этой области.  [c.7]

Поэтому данная книга ни в коей мере не заменяет и не дублирует существующий справочник по теплотехнике и теплопередаче, так как, во-первых, методически она построена по иному принципу и, во-вторых, в основном рассматривает взаимосвязанные процессы тепломассопереноса и математическую теорию переноса, которая в одинаковой мере применима к переносу как тепла, так и массы вещества. Вследствие этого вопросы передачи тепла излучением, задачи чистого теплообмена и ряд других разделов теплопередачи в книге не рассматриваются. Большое внимание уделяется аналитической теории переноса тепла и массы, в частности нестационарным задачам теплопроводности (разд. 2), где путем введения обобщенных функций удалось одновременно описать одномерные температурные поля в телах классической формы, по-новому, в более простом виде, описать распространение температурных волн, дать обобщение регулярным режимам теплового нагрева тел и ряд других обобщений. На основе дальнейшего развития аналитической теории теплопроводности приведены последние работы по решениям системы дифференциальных уравнений тепломассопереноса (разд. 6), подробно рассмотрены гиперболические уравнения диффузии тепла и массы с учетом конечной скорости распространения. Установлена связь этого нового направления в описании явлений тепломассопереноса с работами американской школы по диффузии массы в пористых средах.  [c.4]

Мощность, необходимая для контактной сварки данных деталей, не является постоянной величиной, она уменьшается с удлинением процесса нагрева, но не может стать меньше предельного значе-ния. С уменьшением мощности растет длительность сварки и уменьшается производительность труда. Количественная связь между длительностью нагрева, температурой и мощностью устанавливается тепловыми расчетами, основанными на законе Ленца—Джоуля и на уравнении теплопередачи. С помощью тепловых расчетов в теории контактной сварки решаются три основные задачи, из которых первые две имеют наиболь шее практическое значение  [c.32]

При помощи ударной трубы возможно создание высокотемпературных потоков газа в широком диапазоне плотностей. Несмотря на кратковременность процесса, быстродействующая аппаратура дает возможность проводить тепловые замеры. Более того, кратковременность действия потока имеет даже определенные преимущества, так как с высокой точностью позволяет считать процесс передачи тепла стенкам одномерным. Результаты многих работ [1—4], в которых изучалось развитие пограничного слоя и теплообмен на стенке ударной трубы с помощью тонкопленочных термометров сопротивления, показали, что температура поверхности стенки трубы может быть измерена очень точно. Поэтому в настоящее время появилось два метода измерения коэффициентов переноса, в основе которых лежат результаты измерений теплопередачи к стенкам ударной трубы. Впервые численное решение задачи теплообмена было получено в работе [5] и экспериментально проверено в работе 61, в которой авторы измерили теплообмен в критической точке тупоносого тела, помещенного в ударную трубу. Результаты работы 6] в основном подтвердили теорию, изложенную в работе [5], но при этом обнаружилось, что теплообмен в сильной степени зависит от числа Ье (числа Люиса) и вязкости газа поэтому получить данные о коэффициенте вязкости высокотемпературного газа в невоз-ыущенном потоке было практически невозможно. Авторы работы [7] используя теорию, предложенную в работе [5], а также результаты работы [8], дающей теоретический анализ ламинарного пограничного слоя на стенке ударной трубы, показали, что тепловой поток на боковой стенке очень слабо зависит от числа Люиса. Поэтому в соотнощении для теплообмена единственной неизвестной можно считать коэффициент вязкости в невозмущенном потоке. Это позволило им, используя данные по определению теплового потока к стенкам ударной трубы, при сравнении с численными решениями уравнений пограничного слоя на стенках получить экспериментальные результаты по определению коэффициента вязкости диссоциированного кислорода. Оценивая результаты эксперимента, они пришли к выводу, что на теплообмен к боковой стенке очень слабо влияет фитерий Прандтля, число Люиса, а лучистый тепловой поток в диапазоне температур 2000—4000° К еще пренебрежимо мал. Погрешность экспериментальных данных о вязкости, полученных по этой методике, оценивается авторами в пределах 16%- Сравнение полученных опытных данных с данными, рассчитанными по формуле  [c.217]


С математической точки зрения различие между новой и старой теориями теплопередачи заключается в том, что в старой теории основные переменные не разделены, а в новой разделены. Читатель должен иметь в виду, что обычно решение уравнений начинается с попытки разделить переменные, поскольку уравнения с разделенными переменными решить значительно проще, чем уравнения с неразделенными переменными. В старой теории введение коэффициента теплоотдачи означало использование неразделенных переменных, поскольку сам коэффициент является результатом объединения основных переменных теплового потока и термодвижущей силы. В новой теории эти переменные остаются разделенными, что обеспечивает корреляцию экспериментальных данных, проектирование установок и расчет характеристик процессов, происходящих в них. Различие между этими двумя теориями по существу является различием между неразделенными и разделенными переменными. Отвергать новую теорию теплопередачи - значит отстаивать утверждение, что неразделенные переменные предпочтительнее разделенных  [c.12]

Роль теплопередачи в нелинейной динамической теории упругости понята дд сих пор еще недостаточно. Теория упругости есть по существу теория термоупругости. В основных уравнениях изотермической эла-стостатики тепловые члены опускаются. Обращаясь к ситуациям, когда тепловые члены существенны, мы, не добавляем их в изотермические уравнения, а возвращаемся к первоначальным уравнениям, из которых были выведены изотермические. Поскольку отсутствие тепловых членов приводит к большим математическим упрощениям, особую важность в динамической теории упругости приобретает случай нулевой теплопроводности, илн адиабатическое деформирование. Прн адиабатическом деформировании можно решить много задач (см. гл. 2—4), которые в настоящее время не поддаются решению с учетом теплопередачи. Весьма важным является вопрос, в какой мере эти адиабатические решения представляют собой приближения к полным решениям для теплопроводных сред. Для немногих известных полных решений (гл. 5) ответ гласит, что адиабатическое приближение является достаточным, если исключить области быстрых изменений. В более общем случае вопрос остается открытым.  [c.8]

Согласно теории Ландау — Халатникова, время релаксации в области Т Ti связано с флуктуациями макроскопического параметра, описывающего порядок в гелии II. Теория предсказывает незначительное поглощение при Т Т% и не может объяснить избыточное поглощение, обнаруженное в области Гя —0,3 К. Пиппард [59] предложил специальный механизм для объяснения особенностей распространения звука в Не I вблизи Я,-точки. Жидкость должна состоять из основного вещества Не I, в котором диспергированы включения Не II. Поскольку коэффициент расширения Не I положителен, а Не II отрицателен, при прохождении звуковой волны через жидкость температура основного вещества возрастает, а температура включений уменьшается. Время релаксации для процесса выравнивания температуры Пиппард нашел, решая уравнение теплопередачи. Он получил следующее выражение для а на частотах.  [c.201]

Как уже упоминалось выше, для наших целей достаточно лишь небольших усовершенствований теории Гиббса. Однако тщательный анализ идей Гиббса, необходимый для установления этих изменений, приводит к одному побочному результату несколько неожиданной природы, который вызывает существенное изменение идейной основы теории и оказывается справедливым как для обратимых, так и для необратимых процессов. Основная идея Гиббса состоит в том, что данная термодинамическая система макросистема) сравнивается с некоторым ансамблем чисто механических систем микросистемы) и что движение этого ансамбля интерпретируется как течение в фазовом пространстве. Обычно предполагается, что это течение подчиняется уравнению неразрывности. Однако основания для такого предположения вызывают некоторые сомнения, поскольку это течение не представляет собой течения действительной среды. С другой стороны, легко видеть, что, для того чтобы объяснять произвольные термодинамические процессы, следует отказаться от этой гипотезы и заменить уравнение неразрывности уравнением переноса. Эта операция вопреки тому, что кажется на первый взгляд, согласуется с теоремой Лиувилля. Она опирается только на представление о том, что движение в фазовом пространстве не является чистой конвекцией или течением (как в случае действительной жидкости), но представляет собой налолчение на это явление процесса переноса, или потока (того типа, который встречается в теплопередаче). Различие между этими двумя типами движения тесно связано с различием между изэнтропическими и более общими процессами. В самом деле, легко видеть, что в отсутствие потока теорема Лиувилля исключает все неизэнтропические процессы. Новый  [c.11]


Смотреть страницы где упоминается термин Основные уравнения теории теплопередачи : [c.452]    [c.8]    [c.11]   
Смотреть главы в:

Теплопередача при конденсации и кипении Изд.2  -> Основные уравнения теории теплопередачи



ПОИСК



Теории Уравнения

Теория теплопередачи

Теплопередача

Уравнение основное

Уравнение теплопередачи

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте