Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Испытание на надежность сложных систем

Испытание на надежность сложных систем  [c.509]

Специфика испытания на надежность сложных систем. Испытание на надежность сложных систем, в том числе машин, является серьезной, еще полностью не разрешенной задачей. Эти системы, как правило, весьма дороги и для испытания можно выделить один-два образца, каждое изделие обладает индивидуальными чертами, условия эксплуатации и выполняемые функции весьма разнообразны. Все это и другие особенности, характерные для сложных изделий (см. гл. 4, п. 1), затрудняют проведение испытаний на надежность. Для них, за редким исключением, трудно получить статистические данные о наде кности по результатам натурных стендовых, а в ряде случаев и эксплуатационных испытаний.  [c.509]


Основные принципы, которые должны быть положены в основу методик испытания на надежность сложных систем при ограниченном числе объектов испытания, следующие  [c.510]

Отказы третьей категории допустимы по условиям эксплуатации и не определяют надежности всего изделия или сложной системы. Отказы четвертой категории составляют малую долю среди всех видов отказов, поскольку требования к безотказности работы современных систем, как правило, достаточно высоки. Если же их уровень превосходит регламентированное значение, то они должны быть отнесены к первой категории.. Таким образом, основное число отказов связано с несовершенством изделия с позиций надежности и отражает период его освоения. Наличие этих отказов является сигналом для проведения мероприятий по их ликвидации. Основные же причины потери изделием работоспособности из-за медленно протекающих процессов старения остались при таких испытаниях невыясненными, а показатели надежности неизвестными. Поэтому испытания по оценке параметра потока отказов, являются необходимым, но далеко не достаточным этапом по определению пока телей надежности сложных систем. Главная проблема по испытанию на надежность сложных систем — оценка изменения их выходных параметров за период длительной эксплуатации. i  [c.512]

При испытаниях на надежность сложных систем применяется разнообразная аппаратура для создания необходимых нагрузок и условий испытания (вибростенды, нагрузочные устройства, барокамеры, нагревательные устройства и т. п.), для контроля и измерения параметров (различные датчики и регистрирующая аппаратура), управляющие устройства для осуществления не-  [c.513]

В процессе конструктивной доводки сложных машин обычно вначале проводятся лабораторные испытания на надежность (ресурсные испытания) элементов конструкции и отдельных систем.  [c.484]

При испытании надежности сложных систем должны оцениваться вероятность возникновения параметрических отказов или запас надежности по каждому из выходных параметров и выявляться недопустимые отказы, как следствие ошибок расчета и конструирования изделия или недостаточной надежности технологического процесса его изготовления. Как правило, испытанию сложного изделия предшествуют, а часто проводятся и одновременно испытания отдельных его узлов и агрегатов. При этом стремятся больший объем испытаний отнести к стендовым испытаниям элементов сложного изделия, чтобы при испытании машины в целом не рассматривались те отказы, которые можно вы- явить и избежать при более простых и дешевых испытаниях. При работе сложных систем начинают влиять новые факторы, связанные с взаимодействием отдельных узлов и элементов, которые и должны служить предметом выявления в процессе испытания на надежность.  [c.510]


В [66] приводится метод использования статистической информации об эксплуатации (испытаниях на надежность) элементов для расчета доверительных оценок для показателей надежности систем. Этот экспериментально-расчетный способ является достаточно сложным, и его изложение потребовало бы слишком много места. В связи с этим здесь будут изложены лишь принципы построения таких оценок на примере простой структуры, а именно - на примере последовательного соединения. За более детальными сведениями мы отсылаем к [75, 76-78].  [c.272]

Павлов И.В. Доверительная оценка показателей надежности и эффективности сложных систем по результатам испытаний на надежность // Вопросы экспериментальной оценки показателей надежности. М. Знание, 1979. С. 3—55.  [c.452]

В разделе 4 рассмотрен опыт исследования и обеспечения надежности различных сложных технических систем атомных энергетических установок, ракетно-космической техники (РКТ), летательных аппаратов, радиоэлектронной аппаратуры. Этот опыт представляет особый интерес, так как основан на проведении длительных и дорогостоящих комплексных испытаний на надежность с применением методов определения ресурса, недоступных для многих других отраслей машиностроения.  [c.10]

Экспоненциальное распределение справедливо для условий, если за время испытаний на надежность элементов или систем основные факторы, определяющие уровень надежности, являются стабильными во времени и имеют лишь циклически нестабильный характер. Это справедливо, как правило, лишь в тех случаях, когда либо длительность испытаний какого-либо элемента слишком мала, либо исследуется сложная многофакторная система, где изменения свойств любого из составляющих элементов мало сказываются на показателях надежности системы в целом.  [c.70]

Определение запаса надежности для каждого экземпляра сложной системы может сочетаться с ее контрольными испытаниями. Однако, если испытанию подвергаются один или небольшое число экземпляров машины из серии, то полученные значения запасов надежности будут характеризовать лишь эти экземпляры. Суждение о запасе надежности у всей генеральной совокупности изделий можно иметь или на основании расчета возможных отклонений начальных параметров или при проведении специальных испытаний для имеющихся объектов (см. ниже). Определение в результате испытания машины запаса надежности по выходным параметрам, так же как и анализ потока отказов, в первый период ее работы еще не дает возможности оценить ресурс, вероятность безотказной работы и другие основные показатели надежности. Эти испытания не характеризуют надежности отдельных узлов и систем машины в течение длительного периода эксплуатации. Они являются как бы первым предварительным этапом испытания их надежности и, как правило, базируются на обязательных для каждого готового изделия контрольных испытаниях.  [c.513]

Устройства по сбору информации следует снабжать датчиками, позволяющими автоматизировать учет и сбор необходимых данных. В настоящее время многие устройства снабжаются счетчиками, определяющими число включений, время нахождения в рабочем состоянии, количество циклов движения рабочего вала, время работы электродвигателя на холостом ходу и др. Таким образом, применение подобных устройств позволяет собрать объективную информацию, годную к обработке на ЭВМ. Для многих изделий, используемых в народном хозяйстве, применение таких устройств или экономически неоправданно, или невозможно. Поэтому организация сбора информации о надежности на большинстве предприятий проводится путем заполнения специально подготовленных бланков. В условиях комплексной автоматизации процессов управления производством с применением сложных многосвязных систем и ЭВМ наряду с увеличением количества элементов резко повышается ответственность выполняемых системой функций. Возможность появления частичных отказов не позволяет проводить сбор информации о надежности сложного изделия в целом, фиксируя отказы только на выходе. Это объясняется тем, что влияние частичных отказов на выходной эффект проявляется очень редко. Часто отдельные устройства сложных изделий резервируются, и появление отказа, общего для всей сложной системы, маловероятно. Поэтому при испытании сложных изделий сбор информации  [c.58]


В настоящее время ряд проблем производства сложных систем не могут быть успешно преодолены без решения задач надежности изделия. Несмотрй на отдельные успехи теории надежности, ряд важных ее вопросов еще не разработан. Из-за недостаточной надежности отдельных элементов и систем в процессе отработки и испытаний сложных производственных и информационно-управляю-щих комплексов еще приходится выполнять большое количество доработок, что приводит к задержке серийного производства и существенным экономическим издержкам при эксплуатации.  [c.3]

Таким образом, в настоящее время одной из важнейших является проблема разработки теории определительных многофакторных испытаний объектов на надежность. Решение кардинальных вопросов теории испытаний объектов на надежность позволит существенно сократить сроки разработки сложных технических систем и повысить их качество и надежность.  [c.142]

Ограниченное количество опытных образцов, выделяемых на испытания, и сжатые сроки экспериментальной отработки сложных технических систем не позволяют получить в достаточном объеме статистические данные для достоверной оценки показателей надежности. В связи с этим для контроля выполнения программы экспериментальной отработки используются методы, основанные на совместном применении детерминированных и статистических показателей качества процесса отработки, а также качественных и количественных критериев оценки завершенности отдельных этапов отработки.  [c.258]

Испытание на надежность сложных систем. Наличие одно-го-двух опытных образцов сложных систем и их высокая безотказность исключают применение традиционных методов испытания на надежность, применяемых для относительно простых изделий. Развитие методов испытания в сочетании с прогнозированием и использованием априорной информации, разработка алгоритмов по оценке надежности с учетом постоянно поступающей лнформации о фактическом состоянии изделия, выявление экстремальных реализаций потери изделием работоспособности, сочетание испытания со статистическим моделированием, оценка и прогнозирование ведущих процессов старения — все это является основой для разработки методик испытаний сложных объектов, позволяющих на ранних стадиях создания новых изделий получить информацию об уровне их надежности.  [c.573]

Следующим этапом практического ознакомления студентов с основными вопросами надежности и долговечности машин является выполнение ими лабораторной работы Испытание токарно-револьверного автомата типа 1Б118 на технологическую надежность . В данной работе студенты изучают методику испытания токарно-револьверного автомата на индивидуальную технологическую надежность, являющуюся кратким примером реализации общей методики испытания станков на технологическую надежность, разработанную и развиваемую в настоящее время в МАТИ под руководством проф. Пронико-ва А. С. и частично преподаваемую студентам при чтении курса лекций по надежности и долговечности машин. Оценка технологической надежности станка в данной работе производится на основе анализа отклонений от номинала размеров деталей, обрабатываемых на станке в течение установленного межнала-дочного периода. Последняя лабораторная работа данного сборника Исследование надежности автоматического импульсного привода является примером испытания на надежность сложной системы автоматического регулирования с обратной связью. Эта работа на примере привода знакомит студентов с методикой и аппаратурой экспериментальных исследований на надежность подобных систем. Студентам предложено, разобрав принцип автоматического регулирования в импульсных системах, структурную и кинематическую схемы привода, изучить схему физических процессов, протекающих в приводе и влияющих на изменение начальных параметров системы. Схема физических процессов, положенная в основу расчета привода на надежность, позволяет выяснить взаимосвязь отдельных элементов импульсного привода, процессов, протекающих в нем во время работы, и выходных параметров системы.  [c.312]

Создание сложных технических систем, обладающих заданными высокими значениями, пок азателей эффективности и надежности, возможно лишь при условии решения проблемы получения исходных данных о характеристиках работоспособности элементов этих систем. Под надежностью в соответствии с [14 ] понимается свойство изделия (объекта) выполнять заданные функции, сохраняя свои эксплуатационные показатели в заданных пределах в течение требуемого промежутка времени. Изделие—это общий термин изделием может быть и элемент, и резистор, и реле и система (узел, агрегат, блок, прибор, машина и т. д.). В настоящее время основным средством количественной оценки надежности изделий являются результаты эксплуатации -или специальным образом организованные испытания. Испытания на надежность в зависимости от их цели принято делить нй две группь определительные и контрольные. Определительные испытания на надежность позволяют не только определить фактические значения показателей надежности, но и прогнозировать время возникновения отказов испытываемых изделий. Контрольные испытания на надежность проводят для контроля соответствия показателей надежности установленным требованиям, В результате проведения контрольных испытаний можно лишь утверждать, что уровень надежности данного изделия не ниже заданного контрольные испытания на надежность не рассматриваются.  [c.7]

В-третьих, даже у систем н машин одинакового конструктивного оформления кал<дый экземпляр имеет индивидуальные черты. Незначительные вариации свойств отдельных элементов сказываются на выходных параметрах системы. Подобно биологическим системам и-для техническ их устройств можно высказать следующее пололчение чем сложнее система, тем большими индивидуальными особенностями она обладает. Это положение весьма важно и для разработки методов испытания сложных систем. Однако сложные системы обладают и такими свойствами, которые положительно влияют на их надежность.  [c.177]


В качестве примера структурной схемы параметрической надежности на рис. 65 приведена упрощенная схема для токарно-револьверного автомата 1Б118. Здесь учтены не только перечисленные выше факторы (см. рис. 63), влияющие на один выходной параметр, но и указаны основные узлы и элементы, повреждение которых скажется на показателях точностной надежности. Составление структурной схемы параметрической надежности является начальным этапом при расчете, прогнозировании и испытании сложных систем.  [c.199]

Поэтому при оценке надежности ЖРД н-еоб1СОдймЬ рассматри вать двигатель как сложную систему с параметрами двух различных типов, а при расчетах целесообразно применять метод потенциальной эффективности, используя,две отдельные модели для двух подсистем и двух типов параметров ЖРД. Естественно, что и сами методы испытаний двигателей, необходимые для построения моделей, получаются различными. Ниже мы рассмотрим эти методы, начав с первой подсистемы, которую назовем параметрической и ее модели, но прежде коротко охарактеризуем методы самоорганизующихся моделей и комбинированный метод. При использовании метода самоорганизующихся моделей, все статистические данные о системе разделяют на две выборки -- обучающую и проверочную, На основании данных первой выборки строится модель (т. е. рассчитываются коэффициенты описывающих эту модель уравнений), а на основании данных второй выборки выясняется, есть ли необходимость в коррекции принятой модели и в каком направлении эту коррекцию, вводить. Таким методом ведется отбор и улучшение моделей с целью их приближения к исследуемой системе, причем, отбор ведется не по одному, а сразу по нескольким критериям. Этот метод особенно эффективен в тех случаях, когда нет достаточно полных данных. о физической сущности исследуемых явлений. Например, к подобным случаям относится выбор оптимальной рецептуры пиротехнического твердотопливного заряда, который одновременно оптимизируется по ряду параметров (плотности, температуре горения, стоимости и т. д.). Перебор моделей должен организовываться от простых к сложным, причем необходимо учитывать, что усложнение моделей целесообразно лишь до определенной степени. Это объясняется двумя основными причинами. Во-первых, любое уравнение несет в себе полезную информацию об изучаемом процессе и ошибку. Объем информации о любом процессе при заданной точности его описания конечен, поэтому начиная с некоторого уровня, усложнение моделей. несет все меньше новой информации  [c.37]

Практически установлено, что изменение интенсивности отказов по времени для большинства сложных систем (машин, узлов) носит характер кривой, показанной на рис. I. Период приработки / характеризуется повышенным значением интенсивности отказов при нормальной Эксплуатации (II) интенсивность отказов уменьшается и изменяется сравнительно мало, отказы носят внезапный, случайный характер. В периоде усиленного изнашивания /// иитеисивность отказов снова резко возрастает. Поэтому перед эксплуатацией сложной системы целесообразно проводить кратковременные сдаточные испытания, отсеивающие дефекты приработки. Система, удовлетворительно прошедшая начальный период, более надежна, чем система, находящаяся в начальном периоде. Замена старых узлов (деталей) новыми целесообразна только в период ///. При профилактической замене деталей на новые в периоде II надежность конструкции не возрастает, а уменьшается. Ресурс изделия следует назначать в начале третьего периода (периода изнашивания и старения).  [c.586]

Раздел 3 посвящен одним из наиболее сложных вопросов - исследованию надежности на стадиях проектирования и эксплуатадаи технических систем. В нем рассмотрены проблемы исследования надежности изделий ка этапе экспериментальной отработки обеспечения эксплуатационных свойств деталей, определяющих надежность машин оптимизации конструкций машин по показателям надежности. Описаны стендовые испытания опытных образцов машин с целью обеспечения и прогнозирования надежности.  [c.10]

Основной задачей при разработке методов планирования испьгганий и контроля уровня надежности является получение полной и достоверной информации о надежности выпускаемой партии изделий объема N по результатам испытаний некоторой выборки объема и. Получаемые выборочные характеристики должны являться состоятельными оцен-ками проверяемой партии. Отличительной особенностью испытаний сложных технических систем является ограниченность испытаний по времени и по объему, так как на испытания не может быть поставлено большое количество образцов и испытания не могут продолжаться слишком долго. Поэтому исход-ньпли предпосылками при разработке методов испьгганий будут являться статистические оценки, получаемые по малым выборкам.  [c.262]

Силовое и кинематическое взаимодействие элементов машин и конструкций носит более сложный характер. Поведение этих объектов существенно зависит от их взаимодействия с окружающей средой, а также характера и интенсивности процессов эксплуатации. Для предсказания поведения деталей машин и элементов конструкций необходимо рассматривать процессы деформирования, изнашивания, накопления повреждений и разрушения при переменных нагрузках, температурах и других внешних воздействиях. Чтобы судить о показателях безотказности и долговечности объекта в целом, недостаточно знать только показатели отдельных элементов. К тому же, многие конструкции и машины уникальны или малосерийны, их блоки и агрегаты слишком громоздки или дороги, поэтому нельзя рассчитывать на накопление статистической информации на основе их стендовых или натурных испытаний. В связи с этим для оценки показателей безотказности и долговечности механических систем применяют в основном расчетно-теоретический метод, основанный на статистических данных относительно свойств материалов, нагрузок и воздействий. В этом наиболее существенное отличие теории надежности машин и конструкций как от системной теории надеж-ности, так и от параметрической теории.  [c.12]

Изложены методы исследований и разработок сложных технических систем типа подвижных уста1ювок. Рассмотрена >ганизация создания и планирования испытаний опытных образцов. Представлены математические модели доработок технических систем с учетом управлякмцих воздействий. Приведены методики расчета надежности и планирования испытаний, а также программы обеспечения надежности изделий на всех этапах их жизненного цикла.  [c.48]

Однако для очень больших баллистических снарядов и снарядов для запуска спутника столь же важным или даже более важным является другой фактор. При разработке любого сложного оборудования, будь то хлопкоуборочная машина или самолет, надежность является функцией, асимптотически возрастающей с ростом числа испытаний от относительно малого начального значения. Результаты выполнения программы летной доработки ракетных двигателей будут 1есомненно следовать кривой, приведенной на рис. 14.21. Так как громадные затраты на испытание очень больших снарядов будут ограничивать число возможных испытаний, то мы должны сравнивать надежности жидкостных и твердотопливных систем в начальной области этих кривых. В этой области высоконадежными оказываются твердотопливные двигатели. Мы можем снова  [c.499]


Смотреть страницы где упоминается термин Испытание на надежность сложных систем : [c.510]    [c.245]    [c.132]    [c.452]    [c.112]    [c.356]   
Смотреть главы в:

Надежность машин  -> Испытание на надежность сложных систем



ПОИСК



Испытания на надежность

Надежность сложных систем

Система сложная

Специфика испытания на надежность сложных систем



© 2025 Mash-xxl.info Реклама на сайте