Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплообмен в свободном потоке жидкости

Конвективный теплообмен в свободном потоке жидкости  [c.440]

Обобщение результатов обширных экспериментов по теплообмену в свободном потоке тел различных форм и размеров (проволоки и трубы диаметром 0,015—245 мм, шары диаметром 30—16 ООО мм, плиты и трубы высотой 250—6000 мм), омываемых различными жидкостями (воздух, водород, углекислота, вода, анилин, масла и т. п.), позволило подобрать общую зависимость между критериями подобия. Эту зависимость можно представить в форме следующих уравнений  [c.245]


КОНВЕКТИВНЫЙ ТЕПЛООБМЕН В ВЫНУЖДЕННОМ И СВОБОДНОМ ПОТОКЕ ЖИДКОСТИ  [c.427]

Различают естественную (свободную) и искусственную (вынужденную) конвекцию. Причиной перемещения жидкости или газа из одной части пространства в другую может быть различие плотностей отдельных частей жидкости или газа из-за их неравномерного нагрева. Более легкие частицы жидкости или газа будут подниматься вверх, а на их место будут опускаться болев холодные частицы, обладающие большей плотностью. В этом случае характер движения и теплообмена определяется только условиями нагрева (температурным полем). Такое движение жидкости или газа носит название свободной, а теплообмен —теплообмена в свободном потоке.  [c.270]

Большое значение в технике приобрели процессы теплообмена в движущихся средах. Как известно, течение любой жидкости или газа может быть разделено иа принципиально различные области ламинарного и турбулентного течения. Теплообмен при ламинарном и турбулентном течениях имеет различный Характер. Теплообмен в движущейся среде (жидкость или газ) представляет собой конвективный теплообмен, или. короче, конвекцию. При этом перенос тепла осуществляется путем перемещения объемов жидкости или газа, а следовательно, этот вид теплообмена неразрывно связан с переносом самой среды. Обычно при технических расчетах теплообмен между потоком жидкости, газа и поверхностью твердого тела называют конвективной теплоотдачей. Различают свободную (гравитационную) и вынужденную конвекции.  [c.8]

Характер движения жидкости и границы ламинарного и турбулентного режима в основном зависят от температурного напора А/ = — t . При малых значениях температурного напора вдоль всей поверхности будет преобладать ламинарное движение жидкости. При больших температурных напорах будет преобладать турбулентный режим движения. В развитии естественной конвекции форма тела играет второстепенную роль. Основное значение для свободного потока имеет длина поверхности, вдоль которой происходит теплообмен.  [c.441]

Как указывалось выше (п. 8.2.3), теплообмен при развитом пузырьковом кипении полностью управляется своими внутренними механизмами и не зависит от скорости вынужденного движения. Однако это не означает, что вынужденное движение вообще не влияет на закономерности кипения. Прежде всего с ростом скорости течения жидкости Wq возрастает коэффициент теплоотдачи однофазной конвекции и, следовательно, при неизменной плотности потока q уменьшается перегрев стенки относительно. Это приводит к тому, что начало кипения в потоке жидкости происходит при тем больших q, чем выше скорость жидкости. Эта закономерность хорошо видна из рис. 8.5, на котором представлены сглаженные опытные зависимости q(AT), полученные одним из авторов [17]. Теплообмен происходил на омываемой потоком воды плоской пластине при давлении 3,92 бар. Кривая 1 соответствует кипению при свободном движении (в большом объеме). В условиях обтекания пластины потоком воды до начала закипания коэффициент теплоотдачи не зависит от плотности теплового потока и целиком определяется скоростью жидкости (кривые 2, 3, 4). С ростом теплового потока при постоянном а, растет температура стенки, и при некотором значении  [c.355]


Все полученные выше зависимости требуют внесения в них поправок при движении жидкости со значительным теплообменом, т. е. в случаях, если движение жидкости сопровождается ее нагреванием или охлаждением. Так, при движении жидкости по горизонтальной трубе при нагревании или охлаждении жидкости коэффициенты гидравлического трения возрастают по сравнению с их значениями при изотермических условиях. Такое увеличение сопротивления объясняется действием свободной конвекции вследствие разности плотностей жидкости в ядре потока и у стенки.  [c.165]

Различают теплообмен при свободной конвекции, возникающей при естественном перемещении частиц жидкости вследствие неравномерной ее плотности, обусловленной неравномерным нагревом, и при вынужденной конвекции в результате движения жидкости от механических воздействий (нагнетание жидкости насосом, движение высокоскоростного потока воздуха относительно самолета и др.). Теплообмен при вынужденной конвекции происходит более интенсивно, чем при свободной.  [c.57]

Следующие девять глав (гл. 6—14) посвящены вопросам теплообмена и трения в трубах при стационарном режиме в случае отсутствия в потоке внутренних источников тепла, диссипации энергии и и свободной конвекции. В этих главах рассмотрен теплообмен в круглых, плоских, кольцевых, призматических и цилиндрических трубах при граничных условиях на стенке первого, второго и третьего рода как в случае развитого течения, так и в гидродинамическом начальном участке. Наряду с теплообменом при постоянных физических свойствах значительное внимание уделено теплообмену и трению при переменных свойствах жидкости и газа (гл. 7 и 9 и отдельные параграфы в других главах). В частности, в гл. 9 рассмотрены теплообмен и трение в сверхкритической области параметров состояния вещества, а также при наличии в потоке газа высокой температуры равновесной диссоциации.  [c.4]

Итак, рассматривается течение жидкости и теплообмен в вертикальной трубе при постоянной плотности теплового потока на стенке и однородном тепловыделении в потоке за счет действия внутренних источников. Физические свойства жидкости, исключая плотность, считаются постоянными. Изменение плотности в зависимости от температуры предполагается линейным и учитывается лишь в том члене уравнения движения, который выражает подъемную силу. Таким образом, движение жидкости в данном случае представляет собой результат взаимодействия вынужденной и свободной конвекции. При этом профили скорости и температуры будут осесимметричными.  [c.333]

До сих пор мы рассматривали нестационарные процессы конвективного теплообмена при чисто вынужденном движении жидкости. Однако не лишены интереса некоторые результаты, относящиеся к случаю совместного действия вынужденной и свободной конвекции. В [Л. 17] изучалось нестационарное течение и теплообмен в плоской, а в [Л. 18] — в круглой вертикальных трубах при нагревании жидкости, текущей снизу вверх, или охлаждение жидкости, текущей сверху вниз. Анализ был проведен для полностью развитого (стабилизированного) течения и теплообмена при линейном изменении температуры стенки по длине и равномерном тепловыделении в потоке. Первоначальное стационарное состояние нарушается вследствие произвольного изменения во времени температуры стенки, градиента давления и мощности внутренних, источников тепла.  [c.391]

Способы передачи тепла. Преобразование теплоты в механическую работу в двигателях внутреннего сгорания и газотурбинных установках, охлаждение тяговых электрических машин и аппаратов, подогрев топлива, охлаждение наддувочного воздуха и многие другие процессы на тепловозах сопровождаются теплообменом, т. е. передачей тепловой энергии (теплоты) от одного тела к другому. Природа тел, между которыми проходит теплообмен, может быть различной, в теплообмене могут участвовать твердые, жидкие и газообразные тела. Теплота может передаваться либо непосредственно от тела к телу (например, от твердого тела к твердому, жидкому или газообразному или наоборот), либо более сложными путями (например, от твердого тела к твердому, но не непосредственно, а через промежуточный теплоноситель — жидкость или газ). Передача тепла между жидкими и газообразными телами также может проходить либо непосредственно (при их смешивании или через свободную поверхность жидкости), либо через разделяющую их потоки перегородку (твердую стенку).  [c.55]


При ламинарном режиме течения жидкости теплота передается теплопроводностью по нормали к общему направлению движения потока. Конвективная составляющая теплоотдачи будет больше или меньше в соответствии с распределением скоростей по сечению потока. При значительной разности температур в потоке возникает, как следствие, разность плотностей. На вынужденное движение накладывается свободное движение, турбулизирующее поток, и теплообмен интенсифицируется. Влияние свободной конвекции заметно при Gr Рг > 8 10.  [c.133]

При восходящем течении тонкопленочного потока в испарительных аппаратах значительное влияние на теплообмен оказывают гидродинамика течения пленки и другие факторы. В случае разгона пленки по внутренней поверхности трубы воздухом с температурой, равной температуре насыщения в зоне парообразования, и внешнем обогреве трубы ири тепловом потоке 10—80 кВт/м2 интенсификация процесса всецело определяется испарением жидкости со свободной поверхности пленки. Влияние плотности теплового потока на значение 2 как для дистиллята, так и для морской воды весьма мало. При <30 кВт/м2 возрастание коэффициента теплоотдачи меньше, а с увеличением теплового потока сверх 30 кВт/м значение 02 изменяется более резко. Это можно объяснить следующим образом при небольших q турбулизация пленки нормальной составляющей вектора скорости потока (т. е. скоростью парообразования) незначительна и поэтому зависимость 02 от q невелика. При увеличении плотности теплового потока турбулизация пленки за счет испарения становится сравнимой с турбулизацией паровыми пузырями жидкости, что вызывает рост коэффициента теплоотдачи.  [c.164]

Рассмотрим теплообмен жидкости с горизонтальной греющей стенкой, образующей дно сосуда. При заданном тепловом потоке плотности q, вт-см , около стенки установятся определенный стационарный режим конвективных течений и стационарное поле температур. Если жидкость не доведена до температуры кипения, то с ростом q ее среднемассовая температура Т будет заметно повышаться это сопровождается одновременным ростом температуры греющей поверхности Т и разности Т — Т АТ. На схематическом графике, выражающем зависимость между АГ и q (рис. 45), участок АБ соответствует свободно конвективному теплообмену без кипения. За точкой Б появляется кипение жидкости на стенке. Дальнейшее развитие процесса изображается кривой БВ, которая идет значительно круче, чем АВ. Увеличение коэффициента теплоотдачи а — q АТ обусловлено снижением термического сопротивления пристеночного слоя жидкости при кипении. Интенсификация теплообмена зависит от числа действующих центров и обусловлена не только собственно парообразованием, но также вторичными эффектами. Давление в кипящей системе поддерживается постоянным благодаря регулируемому отбору пара или его конденсации. Подъем на участке БВ сопровождается заметным перегревом пристеночного слоя жидкости относительно темпера-  [c.177]

Анализ условий подобия (Л. 126] основывается на следующих исходных положениях. Рассматривается однокомпонентная смачивающая жидкость (0<я/2) при постоянных физических параметрах в условиях свободного движения. Принимается, что тепловой поток от поверхности нагрева воспринимается только жидкой фазой режим кипения — пузырьковый. Кипение происходит на горизонтальной плоской стенке. Размеры поверхности нагрева велики по сравнению с размерами паровых пузырьков. Температурное поле в жидкой фазе определяется системой дифференциальных уравнений конвективного теплообмена и уравнениями, характеризующими движение пузырьков и теплообмен на их поверхности. В соответствии с этим аналитическое описание процесса включает уравнение энергии  [c.305]

Глава XXIX ТЕПЛООБМЕН В СВОБОДНОМ ПОТОКЕ ЖИДКОСТИ  [c.352]

Естественная конвекция, или конвективный теплообмен, в свободном потоке возникает в связи с изменением плотности жидкости от нагревания. Кстественная конвекция имеет место у нагретых стен нечей, трубопроводов, у батарей центрального отопления,  [c.440]

Конвективный теплообмен различных тел в свободном потоке изучался отдельными авторами в различных условиях. Известны 01ПЫТЫ по изучению теплоотдачи горизонтальных и вертикальных проволок с минимальным диаметром до 0,015 мм, труб с максимальным диаметром до 245 мм, вертикальных плит и труб с высотой от 0,25 до 6 м, шаров с диаметром от 30 мм до 16 м. Опыты проводились с различными теплоносителями с газами (воздух, водород, углекислота) и жидкостями (вода, мазло, различные органические жидкости).  [c.159]

Коэффициент теплоотдачи в процессе испяреипя жидкости со свободной поверхности по сравнению с коэффициентом теплоотдачи при теплообмене, не осложненном массообмепом ( сухой теплообмен ), имеет большее значение. Одной из основных причин интенсификации теплообмена при испарении по сравнению с сухим теплообменом является объемное испарение. Согласно теории объемного испа[)епия, при соприкосновении потока ra.sa с поверхностью жидкости происходят неравномерные процессы очаговой конденсации вдоль ее поверхности. В результате этого имеет место отрыв субмикроскопических частиц жидкости, которые испаряются в пограничном слое. Второй причиной увеличения по сравнениго са,,у является наличие очаговых процессов испарения и конденсации, в результате которых вследствие попеременного изменения объема вещества (пара) в Ю раз происходит нарушение структуры ламинарного пограничного слоя, что и приводит к интенсификации тепло- и массообмепа. Наибольший эфс ект это явление имеет при испарении в вакууме.  [c.514]

Новым направлением в исследовании задач конвективного теплообмена является решение так называемых сопряженных задач, когда в отличие от традиционного подхода теплообмен твердого тела с потоком жидкости рассматривается как взаимосвязанная задача переноса тепла в жидкостях и твердых телах. В разд. 4 приведен обзор последних работ по решению задач внешнего и внутреннего теплообмена. Данное направление весьма актуально, особенно при решении нестационарных задач конвективного тепло- и массообмена. Приведено также описание новых явлений свободная кбнвекция при нагреве сверху (векторы потока тепла и силы гравитации совпадают), термоконвективные волны, а также рассматривается ряд других вопросов в последних работах по тепломассообмену (разд. 3). ,  [c.5]


Теплообмен в условиях естественной конвекции осуществляется при местном нагревании или охлаждении среды, находящейся в ограниченном или неограниченном пространстве. Этот вид конвективного переноса тепла играет преимущественную роль в процессах отопления помещений и имеет значение в различных областях техники. Например, нагревание комнатЬого воздуха отопительными приборами, а также нагревание и охлаждение ограждающих конструкций помещений (стены, окна, двери и пр.) осуществляется в условиях естественной конвекции, или так называемого свободного потока. Естественная конвекция возникает в неравномерно нагретом газе или жидкости, находящейся в ограниченном или неограниченном пространстве, и может влиять на конвективный перенос тепла в вынужденном потоке среды. В больших масштабах свободное перемещение масс среды, вызванное различием ее плотностей в отдельных местах пространства, осуществляется в атмосфере земли, водных пространствах океанов и морей и т. д. За счет естественного движения нагретого воздуха в зданиях осуществляется его вентиляция наружным воздухом. Исследованием свободной конвекции занимался еще М. В. Ломоносов, который применял подъемную силу нагретых масс воздуха для устройства вентиляции шахт, а также для перемещения газов в пламенных печах. К настоящему времени достаточно полно изучен естественный конвективный теплообмен для тел простейшей формы (плита, цилиндр, шар), находящихся в различных средах, заполняющих пространство больших размеров по сравнению с размерами самого тела. Этот вид теплообмена подробно изучался в СССР академиком М. В. Кирпичевым и его сотрудниками.  [c.323]

В процессе адиабатического дросселирования нагретой жидкости сквозь пористый материал удается реализовать двухфазный поток в чистом виде без усложняющих его явлений, вызванных внутрипоро-вым теплообменом между структурой и потоком. Типичный пример этого представлен на рис. 4.1. Бронзовый цилиндрический образец пористостью 0 51 изготовлен спеканием в форме свободно засыпанного порошка сферических частиц фракции 63...100 мкм. Начало оси Z совпадает с входной поверхностью. Внутри образца установлено 7 термопар  [c.77]

Теплообмен между капиллярно-пористым телом и потоком смеси газов представляет не только teopeTH4e Knft интерес, но и имеет большое практическое значение. Если теплообмен происходит при наличии испарения жидкости, то механизм тепло- и массопереноса в пограничном слое вблизи поверхности тела значительно усложняется и не может быть описан классическими закономерностями переноса тепла и массы вещества. Например, при испарении жидкости со свободной поверхности в условиях вынужденной конвекции зависимость между критериями Nu, Re и Рг, как показали А. В. Нестеренко [1] и Ф. М. Полонская [2], не описыза-ется обычными эмпирическими соотношениями, применяемыми в теории теплообмена. Формулы А. В. Нестеренко имеют вид  [c.16]

Проблема совместного действия свободной и вынужденной конвекции в задачах внешнего тепло- и массопереноса привлекла к себе внимание уже свыше сорока лет тому назад. Известны тщательно поставленные опыты Карриера, опубликованные в 1918 г. [1]. Результаты этих опытов установили для горизонтальной плоской поверхности линейное влияние скорости вынужденного движения на интенсификацик> гравитационного переноса массы и тепла. Опыты Юргеса [2] и Франка [3] по теплообмену вертикальной плоской поверхности выявили в указанных условиях аналогичную закономерность до определенного-значения продольной скорости вынужденного потока. Основным и серьезным недостатком всех этих экспериментов с точки зрения возможности их обобщения является незначительный диапазон значений Аг(Ог). Положительной стороной является широкий диапазон изменения скорости движения жидкостей. В 1947—1948 гг. в ЦКТИ Д. Н. Ляховским были поставлены опыты по теплообмену шариков при совместном действии свободной и вынужденной конвекции в интервале значений 14 Ог - -,Л500 и 5 Ре 142. Результаты этих опытов даны в виде серии кривых Пи=/(Ог, Ре).  [c.281]

Теплоотдача представляет собой чрезвычайно сложный процесс, в связи с чем она является функцией большого числа различных факторов, к которым можно отнести характер конвекции X, т. е. свободная или вынужденная конвекция режим течения жидкости Р, т. е. имеет место параллельно-струйчатое движение теплоносителя без перемешивания (ламинарное течение) или в теплоносителе наблюдаются вихри, перемещающие жидкость не только в направлении движения, но и в поперечном направлении (турбулентное течение) скорость движения теплоносителя ш направление теплового потока (нагревание или охлажденпе) Н коэффициент теплопроводности Я, теплоемкость Ср, плотность о, вязкость ц, т. е. физические свойства теплоносителя температуру теплоносителя и поверхности стенки / и их разность А/, называемую температурным напором поверхность стенки Г, омываемую теплоносителем форму стенки Ф ее размеры 1-1, 4, /з, и другие факторы. Таким образом, конвективный теплообмен неразрывно связан с большим числом различных факторов  [c.280]

На рис. 7.8.2 представлены зависимости от теплового потока qw перепада температур AT = Tw — T, (между температурой греющей стенки Tw и температурой жидкости Т, на некотором удалении от стенки W, где эта температура достаточно однородна), а также коэффициента теплоотдачи при кипении насыщенной жидкости (Ti = Ts) на горизонтальной поверхности, обращенной вверх, в поле сил тяжести и в отсутствие вынужденного течения или обтекания греющей поверхности. Видно, что при достаточно малых тепловых потоках (участок АВ), когда пузырьковое кипение очень. слабо выражено, тепловой поток qw пропорционален AT (ге>1), а зависимости qw(AT) и (АГ) такие-же, как для однофазной жидкости в условиях свободной конвекции. На участке ВС реализуется развитое пузырьковое кипение, когда образование и отрыв пузырьков от греющей поверхности рштенсифицирует теплообмен за счет увеличения qi пз-за перемешивания жидкости отрывающимися пузырьками. Дальнейшее увеличение теплового потока приводит к повышению паросодержания ag пристенного слоя и при 0,8 пузырьковая структура из-за слияния пузырьков фактически нарушается, а на  [c.255]

Учитывая ограниченность области применения существующих теплообменных устройств и их относительную сложность, во ВНИИЖТ разработан более простой для внедрения тип малогабаритного прямоточного испарительного водоохладителя, в котором создаваемый вентилятором поток воздуха распыляет воду и отводит от нее тепло. При испарительном охлаждении температура жидкости снижается в результате совмест- кого действия процессов тепло- и массообмена, протекающих при непосредственном соприкосновении свободной поверхности воды с атмосферным воздухом. При. этом происходит поверхностное испарение жидкости, на которое затрачивается часть ее тепла и, кроме того, газ и жидкость обмениваются теплом благодаря конвекции и излучению [3].  [c.27]


Смотреть страницы где упоминается термин Теплообмен в свободном потоке жидкости : [c.10]    [c.14]    [c.10]    [c.256]    [c.12]    [c.255]    [c.256]   
Смотреть главы в:

Техническая термодинамика и теплопередача  -> Теплообмен в свободном потоке жидкости



ПОИСК



Конвективный теплообмен в вынужденном и свободном потоке жидкости

Конвективный теплообмен в свободном потоке жидкости

Поток жидкости

Поток свободный

Структура потока при кипении жидкости в условиях свободного движе13-3. Структура двухфазного потока и теплообмен при кипении жидкости внутри труб



© 2025 Mash-xxl.info Реклама на сайте