Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Виды напряженного состояния

Рассмотрим конкретный вид матриц [0] , [D и вектора е для различных видов напряженного состояния.  [c.17]

На рис. 165, а приведена диаграмма Смита для конструкционной стали при круговом изгибе, циклическом растяжении, сжатии и кручении. Диаграммы для изгиба и кручения строят только по одну сторону оси ординат, так как они охватывают в этой области все возможные виды напряженных состояний. Для практического пользования удобнее диаграммы, изображающие пределы выносливости при различных видах нагружения непосредственно в функции коэффициента асимметрии г или амплитуды а (рис. 165, 6) и содержащие в сжатом виде те же данные.  [c.285]


В зависимости от величины главных напряжений различают следующие виды напряженного состояния в точке линейное, или одноосное — только одно главное напряжение (любое из трех)  [c.126]

На практике чаще всего имеют место два первых вида напряженного состояния.  [c.127]

Теория прочности Мора (пятая теория прочности). Согласно этой теории, единого критерия прочности, общего для всех видов напряженного состояния, не существует. В каждом, случае проч-  [c.198]

Следует подчеркнуть, что состояние материала (хрупкое или пластическое) определяется не только его свойствами, но и видом напряженного состояния, температурой и скоростью нагружения. Как показывают опыты, пластичные материалы при определенных условиях нагружения и температуре ведут себя, как хрупкие, в то же время хрупкие материалы в определенных напряженных состояниях могут вести себя, как пластичные. Так, например, при напряженных состояниях, близких к всестороннему равномерному растяжению, пластичные материалы разрушаются, как хрупкие. Такие напряженные состояния принято называть жесткими . Весьма мягкими являются напряженные состояния, близкие к всестороннему сжатию. В этих случаях хрупкие материалы могут вести себя, как пластичные. При всестороннем равномерном сжатии  [c.189]

Расчеты на прочность отдельных стержней, балок и конструкций, рассмотренные в предыдущих разделах курса, основаны на оценке прочности материала в опасной точке. При таких расчетах наибольшие нормальные, касательные или эквивалентные напряжения (в зависимости от вида напряженного состояния и принятой теории прочности) в опасном сечении и в опасной точке сравниваются с допускаемым напряжением. Если наибольшие расчетные напряжения не превышают допускаемых, то считается, что надлежащий запас прочности конструкции этим обеспечивается. Такой способ расчета на прочность называют расчетом по допускаемым напряжениям.  [c.487]

Заметим, что степень влияния концентрации напряжений на пределы выносливости зависит от вида напряженного состояния. При циклическом кручении, например, эффективные коэффициенты концентрации оказываются обычно более низкими, чем при изгибе для одних и тех же конструктивных форм (рис. 567 и 568). Соотношение между коэффициентами при изгибе и кручении, представленными  [c.606]


Вопросы усталости, и в первую очередь малоцикловой усталости, совершенствование методов испытания на усталость, обоснование деформационных критериев малоцикловой усталости, установление физической модели накопления повреждений при повторно-переменных нагрузках, кинетики развития усталостных трещин в тех или иных условиях нагружения, статистический аспект усталости, а также разработка инженерных методов расчета элементов конструкций на прочность при повторно-переменных напряжениях с учетом различных факторов (вида напряженного состояния, конструктивно-технологических особенностей, температуры, начальной напряженности и т. п.).  [c.664]

Различные виды напряженного состояния классифицируются в зависимости от числа возникающих главных напряжений.  [c.20]

Противоположным свойству пластичности является хрупкость, т. е. способность материала разрушаться при незначительных остаточных деформациях. Для таких материалов величина остаточного удлинения при разрыве не превышает 2—5%, в ряде случаев измеряется долями процента. К хрупким материалам относятся чугун, высокоуглеродистая инструментальная сталь, камень, бетон, стекло, стеклопластики и др. Следует отметить, что деление материалов на пластичные и хрупкие является условным, так как в зависимости от условий испытания (скорость нагружения, температура) и вида напряженного состояния хрупкие материалы способны вести себя как пластичные, а пластичные — как хрупкие.  [c.35]

Если на гранях элемента действуют только касательные напряжения (рис. 111.1), то такой вид напряженного состояния называется чистым сдвигом (см. также 15). Площадки, по которым действуют только касательные напряжения, называются площадками чистого сдвига.  [c.83]

Металлы и сплавы с ОЦК решеткой могут разрушаться пластично или хрупко в зависимости от условий эксплуатации температуры, скорости приложения нагрузки, вида напряженного состояния, наличия острых  [c.544]

Виды напряженного состояния классифицируются обычно по главным напряжениям. Различные случаи напряженного состояния показаны на рис. 2.101. Напряженное состояние, в котором все три главных напряжения отличны от нуля, называют трехосным или объемным (рис. 2.101, а, б, в). Если два главных напряжения отличны от нуля, а одно равно нулю, то образуется двухосное, или плоское, напряженное состояние (рис. 2.101, г, д, е). Когда только одно главное напряжение (любое из трех) отлично от нуля, а два других равны нулю, напряженное состояние называется одноосным или линейным (рис. 2.101, ж, з).  [c.237]

Доказано, что в каждой точке тела имеются три главные площадки, причем они всегда взаимно перпендикулярны. Следовательно, в каждой точке будут три главных направления напряженного состояния в данной точке. В зависимости от значений главных напряжений различают три вида напряженного состояния в точке о д н о о с н о е — когда только одно из главных напряжений отлично от нуля (рис. 10.8,<7) д в у х о с н о е — когда два главных напряжения отличны от нуля (рис. 10.8, ( ) трехосное — когда все главные напряжения отличны от нуля (рис. 10.8, й). На практике чаще всего имеют место одноосное и двухосное напряженные состояния.  [c.123]

Различают три вида напряженных состояний  [c.47]

Таким образом, в соответствии с (2.54), (2.55) третий.инвариант девиатора напряжений /3 характеризует вид напряженного состояния.  [c.56]

Помимо ориентации трех главных осей тензора напряжений направляющий тензор определяет также вид напряженного состояния, т. е., например, параметр Лоде либо угол вида напряженного состояния ф. Действительно, для определения главных направлений направляющего тензора согласно (2.43) имеем систему уравнений  [c.56]

Угол вида напряженного состояния согласно (2.56), (2.57) определится по формуле  [c.57]


Условие пластичности (2.79) Мизеса не зависит от третьего инварианта тензора-девиатора, т. е. от вида напряженного состояния.  [c.58]

В большинстве случаев коррозионного роста трещин процессы адсорбции, водородного охрупчивания и коррозионного растворения взаимосвязаны между собой и протекание одних обуславливает проявление других. Взаимосвязь этих процессов усложнена еще и влиянием структуры металла, вида напряженного состояния, внешних условий нагружения. Изучение этой взаимосвязи составляет предмет коррозионной механики разрушения — научного направления на стыке механики разрушения, металловедения и химического сопротивления материалов.  [c.370]

Только в случае гидростатического давления интенсивность напряжений превращается в нуль. Интенсивность напряжений 04 при простом растяжении (О1 0, О2 = Оз = 0) совпадает с нормальными растягивающими напряжениями. Интенсивность напряжений вводится в соотношения теории пластичности вместе с понятием интенсивности деформации, определение которого дается ниже. Часто вместо них применяют пропорциональные им величины интенсивность касательных напряжений (октаэдрические напряжения) и соответствующий им октаэдрический сдвиг. Интенсивность напряжений является для каждого материала вполне определенной и не зависящей от вида напряженного состояния функцией интенсивности деформаций.  [c.99]

Вид напряженного состояния, при котором в окрестности исследуемой точки можно выделить такой элемент, в четырех гранях  [c.224]

Такой вид напряженного состояния возникает при кручении тонкостенной трубки. Рассмотрим более подробно этот случай нагружения.  [c.224]

Если выделенный параллелепипед поворачивать вокруг точки К, то будут изменяться как нормальные, так и касательные напряжения. Теория упругости доказывает, что для любого вида напряженного состояния всегда может быть найдено такое положение параллелепипеда, при котором в его гранях (секущих площадках) касательные напряжения обращаются в нуль. Такие площадки называются главными, а нормальные напряжения, возникающие в них,—главными напряжениями. Принято самое большое в алгебраическом смысле напряжение обозначать через о , промежуточное — через 02 II минимальное — через 03.  [c.315]

В зависимости от главных напряжений напряженное состояние в точке нагруженного тела может быть различным. При расчете элемента на прочность важно не только установить вид напряженного состояния, но и, главное, оценить его прочность, т. е. ответить на вопрос, а не будет ли опасным для материала элемента возникшее в результате внешнего нагружения напряженное состояние. Прежде всего выясним, в каких механических состояниях может находиться материал.  [c.320]

Таким образом, механическое состояние материала зависит от вида напряженного состояния и значений главных напряжений.  [c.320]

Гипотеза наибольших касательных напряжений. Независимо от вида напряженного состояния опасное состояние наступает тогда, когда величина максимальных касательных напряжений хотя бы в одной точке тела достигает некоторого предельного значения, свойственного данному материалу.  [c.322]

Энергетическая гипотеза. Независимо от вида напряженного состояния опасное состояние наступает в том случае, когда удельная потенциальная энергия формоизменения достигает определенного значения, свойственного данному материалу.  [c.323]

Гипотеза Мора, Гипотеза о переходе материала в состояние разрушения основана на систематизации результатов экспериментальных исследований. На основе опытов устанавливается определенная зависимость прочностных свойств материала от видов напряженного состояния, причем предполагается, что прочностные свойства связаны только с и влиянием же промежуточного напряжения пренебрегают.  [c.323]

Таким образом, в зависимости от свойств материала (ц.). его склонности к деформационному упрочнению и вида напряженного состояния в зоне предразрушения угол наклона локальных слоев текучести 6 может изменяться в широких пределах (0 = 45°...69° 18 —для плоской деформации и 0 = 35 16. .. 61 °28 — для простого растяжения при 1, = 0,125...0,5). Эти теоретические данные хорошо согласуются со многими экспериментами механики разрушения /26/, а влияние деформационного упрочнения на наклон полос текучести объясняет эффект расширения пластических зон в окрестности трещины.  [c.91]

Критическое раскрытие дефекта 5 зависит от вида напряженного состояния в окрестности его вершины (v ), радиуса данной вершины (р) и эффективного значения (характеристика материала для данного показателя напряженного состояния в зоне предразрушения).  [c.102]

Для случаев, представленных на рис. 3.12,а,б, согласно /77/, предельная огибающая является касательной к кругам Мора в точках Aj, положение которых на контуре круга определяется видом напряженного состояния п , а следовательно, и характером нагружения я (так как По = 2и - 1). Например, для случая плоской деформации По = О, = 0,5 имеем т = О (огибающая параллельна оси s), и выражение (3.23) преобразуется в известное соотношение, полученное в работе /84/. При п <0,5, когда точка Л, находится левее точки 5, при > 0,5, когда А/ правее Лд 5, характеристическое соотношение имеет вид  [c.118]

Таким образом, диаграммы механического состояния с известным приближением отражают зависимость формы разрушения от вида напряженного состояния. Приближенность построения заключается в том, что предел текучести и сопротивление разрушению непостоянны. Лучи, изображаюш,ие напряженные состояния, прямы лишь до достижения предела текучести.  [c.194]


Предел выносливости определяют эксиериментально. Он зависит от целого ряда факторов, в частности, от формы и размеров детали, способа ее обработки, состояния поверхности детали, вида напряженного состояния (растяжение — сжатие, кручение, изгиб и т. п.), закона изменения нагрузки во времени при испытаниях и т. п.  [c.591]

В зависимости от свойств материала в процессе циклического упруго пластического деформирования пределы текучести (пропорциональности) и форма кривых деформирования могут изменяться. Так, для большого количества металлов и сплавов при растяжении образца напряжением, превышающим предел текучести (пропорциональности), при последующей разгрузке и реверсивном деформировании, т. е. при сжатии, предел текучести (пропорциональности) оказывается ниже исходного. Это явление, шзвапное эффектом Бау-шингера, наблюдается не только при растяжении — сжатии, но и при других видах напряженного состояния.  [c.619]

При исследовании иоиросон прочности и сложном напряженном состоянии существенное значение имеет вид напряженного состояния. Большинство материалов по-разному разрушается н зависимости от того, являются ли напряжения растягивающими или сжимающими. Как показывает опыт, все материалы без исключения способны воспринимать весьма большие напряжения в условиях всестороннего сжатия, в то время как при одноосном растяжении разрушение наступает при сравнительно низких напряжениях. Имеются напряженные состояния, при которых разрушение происходит хрупко, без образования пластических деформаций, а есть такие, при которых тот же материал способен пластически деформироваться,  [c.245]

Простейшими видами напряженных состояний являются растяжение и чистый сдвиг. Они характеризуются только одним отличным от нуля напряжением. Первое из них имеет место при растяжении стержня и чистом изгибе бруса, второе — при кручении тонкостенной трубки. В зависимости от положения материальной точки при поперечном изгйбе бруса встречаются оба типа напряженного состояния и их комбинация.  [c.45]

Осутцествим переход к более известному деформационному критерию. В отли гие от силового критерия, описы-ва ющего разрушение н условиях наибольшего стеснения деформаций (при плоской деформации), 5,, позволяет учесть вид напряженного состояния в окрестное и концентра гора, форму образцов и схему их нагружения. Воспользуемся соотношениями между критическим коэффициентом интенсивности деформаций /27/, К р и 6  [c.82]

Дня определения значений эффективногого радиуса Рд необходимо знать ресурс пластичности металла в зоне пред-разрушения Лр, который находится по диаграммам пластичности /11 / с учетом жесткости напряженного состояния П. При этом эффективный радиус является также характеристикой вида напряженного состояния, что существенно расширяет возможности анализа процесса разрушения.  [c.84]


Смотреть страницы где упоминается термин Виды напряженного состояния : [c.159]    [c.56]    [c.57]    [c.251]    [c.105]    [c.83]    [c.87]    [c.96]    [c.101]    [c.102]    [c.370]   
Смотреть главы в:

Сопротивление материалов  -> Виды напряженного состояния



ПОИСК



Бокишцкий и И. Я. Клинов. Влияние вида напряженного состояния на механическую прочность полиэтилена

Влияние вида напряженного состояния на ресурс пластичности конструкционных материалов при низких температурах

Влияние вида напряженного состояния на сопротивление пластической деформации и разрушение в условиях ползучести

Графическая интерпретация зависимости интенсивности и вида напряженного состояния от главных напряжении

Деформация идеализированного металла при различных видах напряженного состояния

Зависимость внутреннего трения в материале от величины напряжений и от вида напряженного состояния

Зависимость напряжение — деформация резины при различных видах напряженного состояния

Закономерности деформирования в рааруиенжя тренированных материалов цра различных. а видах напряженного состояния

Линейное и плоское напряженные состояния Виды напряженных состояний

Мера влияния вида напряженного состояния на пластические свойства материал

Напряжения при сварке виды напряженного состояния

Напряжённое состояние упругих тел с покрытиями при разных видах нагружения

ОСНОВЫ РАСЧЕТА НА ПРОЧНОСТЬ Основные виды напряженного состояния

Понятие о главных напряжениях. Виды напряженного состояния материала

Понятия напряженного состояния в точке и его виды

Предел коррозионной выносливости Влияние вида напряженного состояни

Предел ползучести при других, кроме растяжения, видах напряженного состояния

Согласование результатов различных видов испытаний металлов при одноосном напряженном состоянии

Соотношения между пределами усталости при различных видах напряженного состояния в условиях симметричного цикла

Состояние видов

Состояние деформированное Характеристики напряженное — Виды 178Главные оси 175-г Понятие

Схемы напряженного состояния при механических испытаниях различных видов

Теория напряженного состояния Виды напряженного состояния

Теория неупругого деформирования материалов, чувствительных к виду напряжённого состояния

Теория пластического деформирования материалов, чувствительных к виду напряжённого состояния

Угол вида деформированного напряженного состояния 22, 24 Пределы изменения

Угол вида напряженного состояни

Уравнения нелинейной вязкоупругости, учитывающие влияние вида напряженного состояния



© 2025 Mash-xxl.info Реклама на сайте