Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие теоремы динамики систем. материальных точек

Общие теоремы динамики систем материальных точек в механике сплошной среды  [c.94]

ОБЩИЕ ТЕОРЕМЫ ДИНАМИКИ СИСТЕМ МАТЕРИАЛЬНЫХ ТОЧЕК  [c.95]

Вместе с тем появились и существенные дополнения, среди которых следует отметить написанную К. А. Лурье новую (тридцать первую) главу, содержащую изложение основ специальной теории относительности. В заново написанных параграфах получили освещение вопросы полета ракеты простейшей схемы, теории колебаний систем с произвольным конечным числом степеней свободы, применения общих теорем динамики систем материальных точек к сплошным средам (теоремы Эйлера, Бернулли, Борда), а также к выводу общих дифференциальных уравнений динамики сплошных сред и выражения мощности внутренних сил в сплошной среде. Последнее в случае сред с внутренним трением позволяет глубже судить о важном для механики понятии потерь (диссипации) механической энергии при движении среды.  [c.7]


Связь между основными динамическими величинами и силами действующими на систему дают общие теоремы динамики системы материальных точек.  [c.164]

Удовольствуемся пока настоящей, простейшей трактовкой теоремы Карно для случая прямого удара двух тел. Теорема эта на самом деле имеет гораздо более общее значение в динамике систем материальных точек и твердых тел. К этому вопросу мы еще вернемся при описании применений общего уравнения динамики несвободной системы ( 156).  [c.240]

Получили систему из п векторных уравнений. Проецирование этих уравнений на оси декартовых координат приводит к Зп дифференциальным скалярным уравнениям движения системы. Эти уравнения позволяют в принципе, как и в динамике точки, решать две основные задачи определять силы по заданному движению системы и определять движение системы по заданным силам. Но на практике при решении- второй задачи динамики системы возникают большие математические трудности и ее точные решения для системы из трех и более материальных точек неизвестны. Поэтому большое значение приобретают общие теоремы динамики системы, позволяющие просто  [c.130]

На основе законов Ньютона мы вывели общие теоремы динамики для систем свободных материальных точек, записанные в виде дифференциальных уравнений (3.13), (3.14) и (3.15).  [c.123]

Во многих задачах динамики рассматривается движение материальной точки относительно системы отсчета, движущейся относительно инерциальной системы. Дифференциальные уравнения движения материальной точки относительно таких подвижных, в общем случае неинерциальных, систем отсчета получают из уравнений движения точки относительно инерциальной системы отсчета и кинематической теоремы Кориолиса о сложении ускорений.  [c.249]

Общие теоремы теории уддра. Общие теоремы динамики системы материальных точек могут быть переформулированы для случая, когда среди действующих на систему сил присутствуют мгновенные силы, следующим образом.  [c.96]

Такого рода соотношения между измеиеинями во времени суммарных Л1ер движения системы материальньзх точек и суммарными мерами действия приложенных к точкам совокупности сил выражают общие теоремы динамики системы материальны.х точек, применяемые как для отдельных точек и их систем, так и для сплошных сред.  [c.104]


Настоящий курс рассчитан на студентов технических вузов с полной программой по теоретической механике. По сравнению с традиционными курсами в книге более подробно рассматриваются общие теоремы динамики систе.мы, движение материальной точки в центральном силовом поле, динамика тела переменной массы, теория гироскопов, некоторые вопросы аналитической механики и теории колебаний. При построении курса авторы стремились к единству иепользуемых методических приемов и учитывали фактический объем известных студенту втуза сведений, в частности, в курсе последовательно использован аппарат векторной алгебры.  [c.6]

Здесь мы рассматриваем систему материальных точек, попарные расстояния между которыми с течением времени заведомо не будут меняться. За счет чего В силу вышесказанного мы либо можем считать, что дана идеализированная система со связями (г —ry)2 = /,y2 = onst, природа которых нас не интересует, либо скажем, что точки удерживаются какими-то внутренними силами f =—f /, причем ft/IKri—pj). Эти трактовки равносильны и позволяют применить к твердому телу все общие теоремы динамики, выписывая в правых частях соответствующих уравнений только силы внешние по отношению к этой системе  [c.63]

В связи с этим следует обратить внимание на различие между уравнениехм (115) и уравнениями, выражающими общие теоремы динамики системы, рассмотренные в предыдущих параграфах. Как мы видели выше, в уравнения, выражающие теоремы о количестве движения, о движении центра масс и о кинетическом моменте системы, внутренние силы не входят, но реакции связей, если они относятся к внешним силам, из этих уравнений не исключаются в уравнение же, выражающее теорему о кинетической энергии системы, внутренние силы войдут, так как работа внутренних сил вообще не равна нулю. Чтобы убедиться в этом, достаточно рассмотреть следующий простой пример пусть имеем систему, состоящую из двух материальных точек, притягивающихся по какому угодно закону (например, по закону Ньютона). Силы взаимного притяжения этих точек являются для рассматриваемой системы внутренними силами эти силы равны по модулю и направлены по прямой, соединяющей данные точки, в противоположные стороны. Ясно, что если под действием этих сил точки будут сближаться, то работа каждой силы будет положительна и, следовательно, сумма работ внутренних сил не будет равна нулю, а будет больше нуля.  [c.489]

В 1743 г. был опубликован основной труд Даламбера по механике — его знаменитый Трактат о динамике . Первая часть Трактата посвящена построению аналитической статики. Здесь Даламбер фор.мулирует основные принципы механики , которыми он считает принцип инерции , принцип сложения движений и принцип равновесия . Принцип инерции сформулирован отдельно для случая иокоя и для случая равномерного прямолинейного движения. Принцип сложения движений представляет собой закон сложения скоростей по правилу параллелограмм,а. Принцип равновесия сформулирован в виде следующей теоремы Если два тела, обладающие скоростями, обратно пронорциональными их массам, имеют противоположные направления, так что одно тело не может двигаться, не сдвигая с места другое тело, то между этими телами будет иметь мест равновесие . Во второй части трактата, называемой Общий иринциидля нахождения движения многих тел, произвольным образом действующих друг на друга, а также некоторые применения этого принципа , Даламбер предложил общий метод составления дифференциальных уравнешгй движения любых материальных систем, основанный на сведении задачи динамики К статике. Здесь для любой системы материальных точек формулируется правило, названное впоследствии принципом Даламбера , согласно которому приложенные к точкам системы силы мон<но разложить на действующие , т. е. вызывающие ускорение системы, и потерянные , необходимые для равновесия системы.  [c.195]

Наиболее общим приемом составления дифференциальных уравнений движения материальной системы, подчиненной голономным связям, является применение уравнений Лагранжа. При наличии идеальных связей в эти уравнения не входят реакции связей. Если на материальную систему наложены голономные связи, то число уравнений Лагранжа равно числу степеней свободы. Применение этих уравнений особенно целесообразно при рассмотрении систем с несколькими степенями свободы. Так, в случае системы с двумя степенями свободы надо составить два дифференциальных уравнения движения. Если решать задачу, минуя уравнения Лагранжа, то необходимо из многих общих теорем и иных уравнений динамики найти два уравнения, применение которых наиболее целесообразно. Удачно выбрать уравнения и общие теоремы можно лишь на основе значительных навыков в решении задач или путем ряда неудачных проб и ошибок. Вместе с тем применение уравнений Лагранжа дает возможность быстро и безошибочно получить необходимые дифференциальные уравнения движения. Вообще говоря, при отсутствии ясного плана решения зад7чи лучше всего использовать уравнения Лагранжа. При этом существенную роль играет удачный выбор обобщенных координат.  [c.549]



Смотреть страницы где упоминается термин Общие теоремы динамики систем. материальных точек : [c.473]    [c.2]   
Смотреть главы в:

Краткий курс теоретической механики  -> Общие теоремы динамики систем. материальных точек



ПОИСК



Введение в динамику системы материальных точек со связями. Общие теоремы динамики и их применение

ДИНАМИКА Динамика точки

ДИНАМИКА Общие теоремы динамики

Динамика Динамика материальной точки

Динамика материальной системы

Динамика материальной точки

Динамика системы материальных точек

Динамика системы точек

Динамика системы точки 165 —Теоремы

Динамика точки

Замечания о применении общих теорем динамики системы материальных точек

Материальная

О неидеальных связях Принцип Даламбера-Лагранжа и общие теоремы динамики системы материальных точек со связями

ОБЩИЕ ТЕОРЕМЫ ДИНАМИКИ МАТЕРИАЛЬНОЙ СИСТЕМЫ Материальная система

ОБЩИЕ ТЕОРЕМЫ ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ

Общая динамика

Общие теоремы

Общие теоремы динамика материальной точки

Общие теоремы динамики материальной точки и механической системы

Общие теоремы динамики системы

Общие теоремы динамики точки

Общие теоремы динамики точки и системы

Отдел четвертый ОБЩИЕ ТЕОРЕМЫ ДИНАМИКИ Теорема об изменении количества движения системы материальных точек

Приложение. Упрощенный вывод общих теорем динамики системы материальных точек в абсолютном движении (для студентов, изучающих теоретическую механику по неполной программе)

Система материальная

Система материальных точек

Система точек

Системы Динамика

Теорема динамики точки

Теорема динамики точки системы

Теорема системы

Теоремы динамики

Теоремы динамики общие

Теоремы динамики системы

Теоремы динамики системы динамики точки

Точка материальная



© 2025 Mash-xxl.info Реклама на сайте