Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ПИТАТЕЛЬНАЯ ВОДА ДЛЯ ПАРОВЫХ ТУРБИН

ПИТАТЕЛЬНАЯ ВОДА ДЛЯ ПАРОВЫХ ТУРБИН — 195  [c.195]

Питательная вода для паровых турбин— Регенеративный подогрев 13 — 159 Питательные насосы паровозные поршневые — Технические характеристики 13 —4С7 Питательные приборы на паровозах 13 — 407 Плавающие резцы — см. Резцы плавающие Плавиковый шпат 6 — 7 Плавильные агрегаты литейные 6 — 144 Плавильные печи — см. Печи плавильные Плавильные печи электрические — см. Печи электрические плавильные Плавка алюминиевых сплавов 6 — 194  [c.195]


К. п. д. ЭТОГО дополнительного парового цикла т)п < т]п. Поэтому в обычном паровом цикле снижение температуры регенеративного подогрева питательной воды для получения дополнительной работы невыгодно. В парогазовом цикле подводимое по изобаре сс тепло воспринимается от отработавших в газовой турбине продуктов сгорания и дополнительный паровой цикл также является нижней ступенью бинарного цикла. Суммарная работа парогазового цикла  [c.49]

Особое место занимают паровые котлы-утилизаторы, использующие тепло уходящих газов топливопотребляющих агрегатов. Котлы-утилизаторы вырабатывают пар как для технологических целей, так и для турбин [Л. 16]. Вопросы качества пара для этих котлов остаются весьма актуальными, поскольку питательной водой для них служит обычно смесь умягченной воды с небольшой добавкой конденсата, возвращаемого с производства.  [c.18]

Для повышения температуры питательной воды, поступающей в паровой котел, ее можно предварительно нагреть, используя для этой цели промежуточные отборы пара от паровой турбины. На рис. 1 температура воды, поступающей в паровой котел, в этом случае повысится и будет соответствовать точке 3. При этом тепловая энергия отборного пара, прошедшего через часть проточной части паровой турбины и совершившего соответствующую механическую работу, не теряется из установки с охлаждающей водой в конденсаторе, а используется для подогрева питательной воды, снижая тем самым удельный расход топлива. Таким образом, в паросиловых установках часть пара совершает цикл Ренкина, в котором для превращения в работу тепла t —12 нужно затратить в паровом котле тепло, равное t l — ig. Пар из отборов работает по теплофикационному циклу, в котором теплота парообразования возвращается в паровой котел с подогретой питательной водой. В паровом котле остается восполнить лишь тепло, которое израсходовано отбираемым паром на механическую работу в турбине. В результате термический к. п. д. паросиловой установки повышается. При проектировании установки определяется оптимальная температура питательной воды с учетом параметров пара, величины потерь тепла с уходящими из котла газами и соотношения стоимости топлива и поверхностей нагрева котельного агрегата,  [c.7]


Высоконапорные парогенераторы средней производительности (120—230 т1ч), которые компонуются с теплофикационными турбинами с промышленным отбором пара, вследствие потерь больших количеств конденсата, а также трудности получения хорошего качества питательной воды для обеспечения высокой надежности должны иметь принудительную циркуляцию от циркуляционного насоса. Благодаря принудительной циркуляции с барабаном-сепаратором компоновка поверхностей нагрева может быть свободной, что дает возможность создать парогенератор малых размеров по высоте, соответствующих габаритам паровых турбин. При этом облегчается также автоматизация рабочего процесса парогенератора и обеспечивается большая эксплуатационная надежность и маневренность установки. Малая кратность циркуляции, равная 4—5, и высокое давление пара (100—130 ата) в установках средней мощности дают возможность создать надежно работающий циркуляционный насос с небольшими затратами мощности на его привод.  [c.219]

Схема установки для обработки добавочной питательной воды отопительных паровых котлов приведена на рис. 12-5, а схема установки магнитного аппарата в циркуляционной системе охлаждения конденсатора турбины приведена на рис. 12-6.  [c.351]

Питательная вода для современных паровых котлов тепловых электростанций состоит из конденсата паровых турбин и добавочной воды, идущей на восполнение потерь воды и пара.  [c.353]

Установлены два турбоагрегата с противодавлением мощностью 20 и 22 Мвт. На выходе из турбин пар имеет температуру 190° С. Каждая турбина имеет по одному отбору пара для регенеративного подогрева питательной воды. Для лучшего приспособления к меняющейся паровой нагрузке на каждую турбину установлено по два котлоагрегата паропроизводительностью по 90 т/ч.  [c.569]

I — паровой котел 2 — пароперегреватель 3 турбина 4 — электрогенератор 5 - конденсатор 6 — конденсатный насос 7 — бак питательной воды 8 — питательный насос 9 — линия питательной воды котла 10 — условная линия потерь пара и конденсата на ТЭС It — подвод добавочной воды для восполнения потерь /2 — циркуляционный насос /.3 — источник охлаждающей воды (водоем)  [c.186]

Термический к. п. д. цикла Ренкина можно повысить за счет регенерации теплоты. В паротурбинной установке регенеративного цикла (рис. 11.7) вода, поступающая в паровой котел 5, предварительно нагревается паром в регенеративном подогревателе 6, причем для нагрева воды используется пар, частично отбираемый из турбины 2 при его расширении. Турбина соединена с электрогенератором 3. Пар, полученный в котле 8 и перегретый в пароперегревателе 1, направляется в турбину 2, где расширяется до давления в конденсаторе 4. Однако не все количество пара последовательно проходит через все ступени турбины и доходит до конденсатора 4, часть его g отводится из турбины после частичного расширения и направляется в регенеративный подогреватель 6 (РП), где в результате конденсации пар подогревает питательную воду, подаваемую насосами 5 и 7 в котел 8. Конденсат греющего пара, т. е. пара, подаваемого в РП, в зависимости от типа РП может либо смешиваться с питательной водой и подаваться в котел, как показано на рис. 11.7, либо отводиться из РП и подаваться в котел, не смешиваясь с основным потоком питательной воды. Таким образом, в паровой котел поступает такое же количество питательной воды, какое выходит из котла в виде пара.  [c.170]

Преимущество парогазового цикла заключается еще в том, что регенеративный подогрев питательной воды, осуществляемый в автономном паровом цикле отборным паром из турбины, может быть выполнен в парогазовом цикле газами, отходящими из газовой турбины, чем необратимый процесс отдачи тепла газами холодному источнику в автономном газовом цикле превращается в парогазовом цикле в обратимый процесс, а освобождающийся отборный пар, участвуя в обратимом адиабатном процессе, используется для совершения полезной работы.  [c.200]


Для повышения экономичности работы паротурбинных установок, помимо использования пара высоких параметров и его вторичного перегрева, широко применяют так называемый регенеративный цикл, в котором питательная вода до ее поступления в котельный агрегат подвергается предварительному нагреву паром, отбираемым из промежуточных ступеней паровой турбины. На рис. 10-21 представлена принципиальная схема паросиловой установки с регенеративным подо-  [c.122]

Во всех современных крупных паровых турбинах предусматривается несколько промежуточных нерегулируемых отборов пара для- осуществления регенеративного подогрева питательной воды.  [c.349]

Как видно из приведенного перечня, в схеме МГД-генера-тора нет традиционного оборудования для производства электроэнергии на тепловых электростанциях парового котла и турбины, а также установок по подаче питательной воды. Все это должно значительно упрощать и удешевлять энергетическую установку.  [c.197]

Повышение температуры перегретого пара выше заданного значения также недопустимо, так как это влечёт за собой ускорение деформации и преждевременное разрушение металла турбинных установок, а также и пароперегревателя и приводит к необходимости аварийного останова. Между тем любое изменение режима работы котла, вызванное изменением нагрузки котла, избытка воздуха, качества топлива, температуры питательной воды условий работы пылеприготовительных устройств и др., отражается на температуре перегретого пара, причём некоторые из указанных режимных факторов нередко действуют в одном и том же направлении. В результате такого положения возникла необходимость в установке на паровых котлах специальных устройств для поддержания равномерной температуры перегретого пара, которые известны под названием регуляторов перегрева.  [c.62]

На рис. 1-1 представлена общая схема технологического процесса современной электростанции. Как видно из рисунка, рабочее тело (вода) из аккумуляторного бака деаэратора, питательным насосом подается в паровой котел, в котором она превращается в насыщенный пар различного давления. Из котла насыщенный пар поступает в пароперегреватель, где он подсушивается и перегревается. Из пароперегревателя пар поступает в паровую турбину, находящуюся на одном валу с генератором. Экономически выгодно, чтобы рабочее тело расширялось до возможно меньшего давления. Для этого за турбиной устанавливается специальный конденсатор, через который по трубам циркулирует охлаждающая вода, а между трубами конденсируется отработанный пар турбины, в результате чего давление отработанного пара, выходящего из турбины, снижается до 0,03— 0,05 ат. Конденсированный пар с помощью насоса направляется из конденсатора в головку деаэратора, куда одновременно поступает и добавочная порция предварительно подготовленной (химически очищенной или обессоленной) воды, предназначенной для восполнения потерь конденсата, пара и котловой воды (потери последней происходят при продувке котлов). Добавление химически очищенной воды в котлы может достигать на ТЭЦ нескольких десятков процентов.  [c.7]

Для обессоленного конденсата, питательной воды, перегретого пара и конденсата турбин для создания величины pH 8,89,0 требуется концентрация пиперидина 1,2—1,3 мг/л. Пиперидин обладает более высоким коэффициентом распределения между водой и паром, чем аммиак. При давлении 6,8-10 Па, (7 кгс/см ) и температуре 180°С коэффициент распределения пиперидина между жидкой и паровой фазами равен 0,7, а аммиака — 0,15. При такой величине коэффициента распределения пиперидина на блоках с прямоточными котлами при конденсации греющего пара подогревателей низкого давления и мятого пара в конденсаторе турбины в сконденсированной пленке будет обеспечено присутствие до 60— 70% пиперидина от общего количества поступающего с паром. При концентрации пиперидина в питательной воде 1,2—1,3 мг/л концентрация его с учетом термического разложения в паре за котлом будет составлять около 0,7 мг/л. Последнее обстоятельство позволяет считать, что при конденсации греющего пара ПНД и пара в конденсаторе будет обеспечено pH питательной воды на уровне 8,0.  [c.270]

Величина удельного расхода пара, количество пара, отбираемого для регенеративного подогрева питательной воды, и величина связаны с начальными параметрами пара. На фиг. 17 представлены величины наибольшей мощности в зависимости от начальных параметров пара. Из фиг. 17 следует вывод предельная мощность однопоточной турбины с параметрами пара р = 500 кг см и t = 700° С приблизительно в 2 раза выше предельной мощности паровой турбины с параметрами пара р =90 кг см а t = 500° С при тех же размерах последней ступени.  [c.63]

HOTO яаправляется в конденсатор и выделяющаяся при конденсации теплота полностью теряется. Существующие у таких турбин нерегулируемые по давлению отборы пара (от 2 до 9) из промежуточных ступеней используются для регенеративного подогрева питательной воды для паровых котлов  [c.192]

Подытоживая требования, предъявляемые к качеству питательной воды для паровых котлов, можно сказать, что эта вода должна по возможности содержать минимальное количество вредных для котла и турбины примесей, что определяется по следующим основным показателям ее качества прозрачнюсть, жесткость, солесодержание, кремнесодсржание, содержание растворенных газов, величина pH. Это, однако, не значит, что во всех случаях необходимо добиваться получения воды, приближающейся по своему качеству к химически чистой воде. Получение такой воды требует дорогостоящих технологических процессов. Поэтому в зависимости от типа парового котла, парамегров пара, качества сырой воды и др. определяются нормы качества питательной воды.  [c.86]


Подготовка питательной воды для отлов. Котлы будут питаться смесью конденсата от турбин, бойлеров, подогревателей, паропреобразовате-лей, а также конденсатом, возвращающимся от паровых потребителей, и добавком в виде конденсата вторичного пара паропреобразователей. Учитывая повышенные требования к качеству питательной воды котлов высокого давления (табл. 13), предусматриваем непрерывную продувку котлов с установкой, с целью уменьшения потерь от продувки, двух сепараторов (расширителей) продувки на давлении 14 ата и на давлении 1,2 ата. Пар из первого расширителя идет в линию отбора 14 я/и, а пар из второго — в деаэратор.  [c.112]

Регулирование [ [двигателей объемного вытеснения В 25/(00-14) (паросиловых К 7/(04, 08, 14, 20, 28) паротурбинных К 7/(20, 24, 28)> установок-, распределителышх клапанов двигателей с изменяемым распределением L 31/(20, 24) турбин путем изменения расхода рабочего тела D 17/(00-26)] F 01 движения изделий на металлорежущих станках, устройства В 23 Q 16/(00-12) F 04 [диффузионных насосов F 9/08 компрессоров и вентиляторов D 27/(00-02) насосов <В 49/(00-10) необъемного вытеснения D 15/(00-02)) и насосных установок (поршневых В 1/(06, 26) струйных F 5/48-5/52) насосов] F 02 [забора воздуха в газотурбинных установках С 7/057 зажигания ДВС Р 5/00-9/00 подогрева рабочего тела в турбореактивных двигателях К 3/08 реверсивных двигателей D 27/(00-02) (теплового расширения поршней F 3/02-3/08 топливных насосов М 59/(20-36), D 1/00) ДВС] зазоров [в зубчатых передачах Н 55/(18-20, 24, 28) в муфтах сцепления D 13/75 в опорных устройствах С 29/12 в подшипниках <С 25/(00-08) коленчатых валов и шатунов С 9/(03, 06))] F 16 (клепальных машин 15/28 ковочных (молотов 7/46 прессов 9/20)) В 21 J количества (отпускаемой жидкости при ее переливании из складских резервуаров в переносные сосуды В 67 D 5/08-5/30 подаваемого материала в тару при упаковке В 65 В 3/26-3/36) конденсаторов F 28 В 11/00 G 05 D [.Mex t-нических (колебаний 19/(00-02) усилий 15/00) температуры 23/(00-32) химических н физико-химических переменных величин 21/(00-02)] нагрузки на колеса или рессоры ж.-д. транспортных средств В 61 F 5/36 параметров осушающего воздуха и газов в устройствах для сушки F 26 В 21/(00-14) парогенераторов F 22 В 35/(00-18) подачи <воздуха и газа в горелках для газообразного топлива F 23 D 14/60 изделий к машинам или станкам В 65 Н 7/00-7/20 питательной воды в паровых котлах F 22 D 5/00-5/36 текучих веществ в разбрызгивающих системах В 05 В 12/(00-14))  [c.162]

Добавочная питательная вода подается из водоподготовительной установки 8 в деаэратор 4, где она смешивается с конденсатом турбин. Питательным насосом 5 вода из деаэратора через подогреватели высокого давления и водяной экономайзер 1 подается в котел. Таким образом, движение воды и пара на КЭС осуществляется по замкнутому циклу деаэратор, питательный насос, котельный агрегат, паровая турбина, конденсатор, конденсатный насос и снова деаэратор (рис. 0-1,о). При этом внутристанционные потери воды и пара происходят только через неплотности и с продувкой котлов и в нормальных условиях составляют незначительную величину, не превышающую 0,5—1% общей паропроиз-водительности котельной. Следовательно, на КЭС основной составляющей питательной воды является конденсат турбин. Аналогичное положение имеет место и на чисто отопительных ТЭЦ при отпуске тепла для отопления и вентиляции с применением воды в качестве теплоносителя.  [c.13]

Внутристанционные потери пара и конденсата могут быть значительно уменьщены путем установки дренажных и сливных баков для сбора конденсата, путем правильного выбора габаритов конденсатных баков, путем применения сварки трубопроводов и обеспечения высокой плотности фланцевых соединений, ликвидации парения предохранительных клапанов, отказа от использования паровых форсунок, паровых приводов и паровых обду-вочных аппаратов, а также путем применения теплообменных аппаратов с приспособлениями для конденсирования и улавливания отработавшего пара. При соблюдении этих условий внутристанционные потери пара и воды составляют незначительную величину, не превышающую 0,5—1,0% общей производительности парогенератора. Следовательно, на КЭС основной составляющей питательной воды является конденсат турбин, что видно из водного баланса КЭС  [c.11]

В пароводяной тракт ТЭС непрерывно поступают загрязнения, ухудшающие качество питательной воды а) с паром, вырабатываемым парогенератором б) с при-сосами охлаждающей воды через неплотности в конденсаторах паровых турбин в) с присосами через неплотности в теплофикационных подогревателях г) с низкокачественным дистиллятом или с забросом концентрата во вторичный пар паропреобразователей д) с загрязненным конденсатом внешних потребителей отборного пара теплофикационных турбин е) с добавочной питательной водой, восполняющей потери пара и конденсата внутри ТЭС и у внешних потребителей пара ж) с реагентами, вводимыми в тракт питательной воды для осуществления так называемого коррекционного водного режима, предназначенного для борьбы с коррозией конструкционных металлов и с накипеобразованием на поверхностях нагрева з) с продуктам коррозии элементов энергетического оборудования и трубопроводов, омываемых водой или паром. При этом следует иметь в виду, что абсолютная величина каждого из перечисленных источников загрязнений может изменяться в довольно широких пределах в зависимости от типа ТЭС, условий ее эксплуатации, от принятой схемы обработки добавочной питательной воды и загрязненных конденсатов, а также от противокоррозионной стойкости применяемых конструкционных материалов и защитных покрытий. Для того чтобы предотвратить накопление поступающих в пароводяной тракт электростанции загрязнений, необходимо организовать их систематический вывод из пароводяного цикла путем непрерывной и периодической продувки парогенераторов с многократной циркуляцией, применения промывочно сепарационных устройств прямоточных парогенераторов докритического давления, химического обессоливания конденсата и т- д.  [c.13]

Электростанции с барабанными котлами снабжались блочными обессоливающими установками (БОУ) для конденсата турбин только при солесодержании охлаждающей воды более 5000 мг/л и, редко, автономными обессоливающими установками для станционных и внешних, обычно горячих, конденсатов. Поэтому качество питательной воды этих паровых котлов, несмотря на более низкие требования, иногда не соответствует нормам в первую очередь по содержанию железа и меди. Эти примеси, а также цинк поступают в основном в результате коррозии водоконденсатного тракта, подсосов охлаждающей воды в конденсаторах турбин и сетевой воды в сетевых подогревателях — бойлерах.  [c.8]

Таким образом, паропреобразователи служат одновременно и испарителями для восполнения потерь конденсата, а подогреватели, обогреваемые вторичным паром,-—конденсаторами испарителей. Термическая подготовка питательной воды состоит из регенеративного подогрева основного конденсата конденсационных турбин в двух ступенях подогревателей и деаэрации всей питательной воды, т. е. основного конденсата турбин, конденсата греюнгего пара паропреобразователей и парового промежуточного перегревателя и дистиллята, а также из последующего подогрева всей питательной воды в подогревателе высокого давления. Конечная температура питательной воды составляет 180 С, а температура деаэрации 155° С. Химически счищенная вода, являющаяся питательной водой для паропреобразователей, подогревается и деаэрируется в двух ступенях, которые обогреваются частично паром уплотнений противодавленческих турбин и частично вторичным паром г.спарителей.  [c.445]


На рис. 19-13 изображена каскадная схема паротурбипной установки с тремя отборами пара для подогрева питательной воды. На рисунке означают 1 — паровой котел 2 — пароперегреватель 3 — паровая турбина 4 — конденсатор 5 — пасос питательной воды 6 — поверхностный подогреватель 7 — дренажный насос  [c.305]

Воздух, сжатый в ко.мпрессоре, подается в камеру сгорания парогенератора, работающего на газовом или жидком топливе при постоянном (повышенном по сравнению с атмосферным) давлении р. Образующийся в парогенераторе водяной пар поступает в пароперегреватель и затем в паровую турбину. Продукты сгорания, температура которых снижена за счет отдачи теплоты на парообразование до приемлемой величины, подаются в газовую турбину, а из последней в газоводяной подогреватель, служащий для подогрева питательной воды.  [c.590]

В установке, показанной на рис. 9.16, а, необходимый ддя горения воздух подается в котел I компрессором 10 продукты сгорания расширяются в газовой турбине 11 и используются для подогрева питательной воды в экономайзере 8. Основное количество теплоты рабочему телу паровой турбины 2 передается в котле 1 при максимальном давлении газовой среды цикла. Конденсатно-питательный тракт ПТУ тради-ционен и включает конденсатор 4,  [c.351]

Питательные установки предназначаются для подачи в котел подлежащей испарению воды. Их основной частью являются питательные насосы с электрическим (Д. ) и паровым (Д2) приводом, развивающие давление необходимое для преодоления давления пара в котле и сопротивления всей системы питательных линий. Другой частью питательной установки являются питательные баки (Д/), предназначаемые для принятия и хранения некоторого количества воды, подаваемой в котлы (питательная вода). Баки вводятся в систему питания котла, чтобы Исключить опасность перерыва в его питании. В котельных установках элект-роетанций в котельные агрегаты обычно подается вода, предварительно подогретая отборным паром из турбин в специальных подогревателях (Д4).  [c.252]

В рассматриваемой тепловой схеме паровая турбина 7 принята конденсационной (возможна установка и теплофикационных турбин) с нерегулируемыми отборами пара из промежуточных ступеней для регенеративного подогрева питательной воды. Начальные параметры пара перед турбиной 7—12,8 и 565° С. В установке предусмотрен один промежуточный перегреватель, в котором пар при давлении 2,65 Мн1м перегревается до 565° С. После турбины 7 отработавший пар поступает в конденсатор 8. Конденсат из него насосом 9 подается в подогреватели 10 регенеративного цикла низкого давления (все подогреватели низкого давления на схеме условно показаны в виде одного, обозначенного позицией 10). После подогревателя 10 конденсат поступает в деаэратор //и далее в питательный насос 12, который подает питательную воду в подогреватели 13 высокого давления (эти подогреватели также условно показаны в виде одного обозначенного позицией 13). Для того чтобы иметь возможность регулировать температуру питательной воды, ее поток после насоса 12 разветвляется и часть питательной воды направляется в водяной экономайзер 14, являющийся второй ступенью по ходу уходящих газов из турбины 5.  [c.381]

САОЗ обеспечивают аварийное охлаждение зоны при возникновении крупных неплотностей в первом контуре для ВВЭР-440. В схему второго контура входят паропроизводящая часть парогенераторов, трубопроводы, подогреватели воды, другое теплотехническое оборудование с системами контроля и управления рабочими параметрами. Схема компоновки первого и второго контуров АЭС с ВВЭР-1000 показана [10] на рис, 1.5. В энергоустановках с ВВЭР-440 и ВВЭР-1000 используются парогенераторы горизонтального типа. Трубные пучки парогенераторов погружены в теплоноситель с естественной циркуляцией котловой воды в межтрубном пространстве и поперечным омыванием труб. Питательная вода подается под уровень кипящей воды. Нагретый в реакторе теплоноситель проходит через трубные пучки парогенераторов. Образовавшийся в парогенераторе пар после сепарации в паровом объеме через коллектор подается к турбинам. Для реакторов, указанных в табл. 1.1, паропроизводительность парогенераторов увеличивалась соответственно от 230 до 1470 т/ч (230-325-450-1470). Давление пара на выходе повышалось соответственно 3,14-3 24—4 6-6,3 МПа, а температура питательной воды - 189-195-226-220° С.  [c.17]

Каждой начальной температуре пара соответствует одно термодинамически наивыгоднейшее давление. Это паивыгодней-шее давление зависит от температуры подогрева питательной воды в системе регенерации. Повышение температуры подогрева питательной воды несколько увеличивает начальное давление. Например, для t = 600° С при увеличении температуры питательной воды до t а > 270° С наивыгоднейшим давлением вместо р = = 220 кг/см становится р > 250 кг1см . Величина наивыгоднейшего давления также зависит и от степени совершенства паровой турбины как трансформатора тепла в механическую работу. При увеличении относительного к. п. д. турбины величина наивыгод-нейшего давления для данной температуры возрастает. Развитие отечественной энергетики идет по пути применения наивыгоднейших начальных давлений пара при допустимой для данного времени начальной температуре пара.  [c.58]


Смотреть страницы где упоминается термин ПИТАТЕЛЬНАЯ ВОДА ДЛЯ ПАРОВЫХ ТУРБИН : [c.148]    [c.18]    [c.265]    [c.180]    [c.152]    [c.85]    [c.290]    [c.199]    [c.99]    [c.292]    [c.207]    [c.129]    [c.74]    [c.83]    [c.10]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.195 ]



ПОИСК



Вода питательная

Н питательные

ПИТАТЕЛЬНАЯ ВОДА ДЛЯ ПАРОВЫХ ТУРБИН для разгрузки ж.-д. вагонов и судо

Питательная вода для паровых турбин- Регенеративный подогрев

Подогреватели питательной воды и бойлеры паровых турбин

Расчет эффективности использования тепловых ВЭР на подогрев питательной воды паровых турбин

Турбина паровая

Турбины Паровые турбины

Турбины паровые



© 2025 Mash-xxl.info Реклама на сайте