Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Число кольца

Вместо оптических, для абсолютных измерений могут применяться электромеханические измерители аналогичного устройства. На диске здесь также наносится ряд концентрических колец, каждое из которых предназначено для определенного разряда двоичного числа. Кольца состоят из токопроводящих и непроводящих участков (рис. 121). Считывание с каждого кольца производится своей щеткой. Когда она касается токопроводящего участка, возникает электрический импульс, соответствующий двоичной единице, когда импульса нет — считывается нуль. Недостатком таких устройств является быстрый износ щеток.  [c.198]


Подшипники качения ответственного назначения, в том числе кольца шарико- и роликоподшипников со стенками толщиной до 15 — 20 мм и детали качения  [c.324]

В случае изготовления из одной заготовки нескольких деталей одновременно (например, поршневых колец из гильзы) время на одну деталь (в указанном примере — на одно кольцо) определяется делением общей суммы времени обработки заготовки [по формуле (41) или (42)] на число одновременно обрабатываемых деталей, получаемых из данной заготовки.  [c.110]

Ч у г у н ы разделяют на серый, ковкий и легированный со специальными свойствами. Наиболее распространены отливки из серого чугуна, выпускаемого по ГОСТ 1412—85 (СТ СЭВ 4560—84), марок 10, 15, 18, 20, 25, 30, 35. Чем больше число, тем чугун тверже и прочнее на растяжение и изгиб. Так, чугун марок 10 и 15 применяют для слабо нагруженных деталей (крышки, кожухи, корпуса подшипников и т. п.) марок 20...35 — для станин металлорежущих станков, зубчатых колес и т. п. Для ответственных деталей и сложной конфигурации (коленчатые валы, корпуса насосов, поршневые кольца и т. п.) применяют высокопрочный чугун марок 35... 100 по ГОСТ 7293—85.  [c.199]

Предельное полезное число пар колец г р можно найти, если ие принимать в расчет кольца, создающие малую долю крутящего момента, например 15° , т. е. принять ф=0,8. Тогда по формуле (91)  [c.309]

На долговечность подшипников влияют условия их нагружения и работы. Радиальные и радиально-упорные подшипники весьма часто подвергаются одновременному действию радиальных Н и осевых А нагрузок (см. рис. 292), которые на долговечность подшипников оказывают неравноценное влияние. Подшипники, у которых наружное кольцо неподвижно, а внутреннее — вращается, имеют более высокую долговечность, так как уменьшается число циклов нагружения неподвижного кольца. Долговечность подшипников снижается при действии переменных и ударных нагрузок, а также с повышением рабочей температуры подшипников узлов от 125° С и более.  [c.440]

Высокая точность подшипника в работе достигается благодаря технологичности конструкции, возможности регулирования зазора путем распора внутреннего кольца и высокой жесткости, связанной с большим числом тел качения. Быстроходность достигается рациональной формой тел качения, высокой точностью и совершенной конструкцией сепаратора.  [c.344]

Здесь и ниже принято, что направление нагрузки постоянно. Число циклов повторных нагружений в минуту каждой точки на дорожке качения вращающегося кольца пропорционально частоте вращения сепаратора относительно рассматриваемого кольца п —умноженной на число тел качения в нагруженной зоне <р,  [c.350]


Усталостное выкрашивание рабочих поверхностей. Перекатывание тел качения по кольцам связано с образованием в поверхностных слоях контактирую- щих тел знакопеременных напряжений, которые после определенного числа циклов нагружений приводят к образованию начинающихся от поверхности микротрещин. Последние расклиниваются проникающим в них смазочным материалом, что приводит к выкрашиванию. Обычно выкрашивание  [c.350]

Этап 1. Окружение исходной точки кольцом равносторонних треугольников так, чтобы число внешних  [c.22]

Если кольцо подкрепить четным числом 2п (п 2) равноотстоящих опор (рис. 510), то изгиб произойдет по 2п полуволнам, и критическое значение будет определяться выражением (14.39) для заданного п.  [c.440]

Волновая передача может быть двухступенчатой (рис. 15.20), В этом случае гибкое колесо / выполняется в виде кольца с двумя зубчатыми венцами z, и 23, которые входят в зацепление с жесткими колесами 2 и 4 с числами зубьев и соответственно). Жесткое колесо 2 неподвижно движение передается с помощью двух волновых зацеплений от вала генератора волн 3 жесткому колесу 4. Передаточное отношение многоступенчатой волновой передачи (рис, 15.20) определяется, как и аналогичного планетарного механизма, по формуле  [c.429]

В настоящее время из сплава М40 получены все основные виды промышленных полуфабрикатов фольга толщиной до 50 мкм, листы, прессованные полуфабрикаты [61, с. 331], поковки (в том числе кольца диаметром до 2000 мм), штамповки и т. д. При изготовлении этих полуфабрикатов выявляются некоторые особенности сплава, обусловленные его природой. Так, в процессе деформации (особенно холодной) сплав быстро упрочняется, что приводит к увеличению числа промежуточных отжигов. Припро-ведении прессования, ковки, штамповки и других операций требуются повышенные усилия деформации. Не желателен нагрев металла перед деформацией выше 440° С, так как это уменьшает степень дробления литых фаз, присутствующих в сплаве в большом количестве, что может ухудшить качество полуфабрикатов. Для получения хорошей поверхности полуфабрикатов необходимо применение пониженных скоростей горячей деформации (подобно сплаву АМгб). В этом случае в процессе горячей деформации в металле успевает пройти частичный отжиг, способствующий исчезновению части образовавшихся несовершенств кристаллической решетки, что повышает пластичность металла. Так, например, при ковке на прессе литой нагретой заготовки первая осадка осуществляется с умеренной скоростью, при этом после небольшой осадки по высоте заготовки делается непродолжительная остановка (происходит частичный отжиг), после чего деформация продолжается. Для более полного дробления литых интерметаллидных фаз при ковке деформацию проводят с тройной сменой осей (не менее), но уже при второй и более осадках увеличивают процент деформации до обычного. Отличительная особенность полуфабрикатов и слитков сплава М40 — наличие мелкозернистой структуры. Изменение температурного режима и степени деформации, а также проведение нагревов полуфабрикатов прн высоких температурах незначительно изменяют размеры зерен.  [c.131]

Машинное литьё разное (в том числе вагонные буксы, башмаки, подшипники) Машинное литьё повышенного качества (в том числе кольца поршневые и золотниковые, цилиндры паровозные, втулки золотниковые и цил, идро-вые и литьё для ди. елей и кранов). ........ 70 24 6 47,0 0,6 2 45,4 24 5  [c.198]

С целью повышения качества поверхности заготовок на многих предприятиях аппаратостроения протяжные кольца матриц изготавливают из чугуна марки СЧ 15-32 и СЧ 32-52, механические свойства которых приведены в табл. 4.4, где в наименовании марок серого чугуна буквы и числовые индексы обозначают С - серый, Ч - чугун, первое число соответствует пределу прочности при растяжении ( б , Ша), второе число - пределу прочности при изгибе (6g y, Ша). При выборе марки чугуна следует учитывать, что с уменьшением прочности чугунов улучшаются их литейные сроР-стза и уменьшаются остаточные напряжения и коробление с увеличением толщины стенок отлквок механические свойства понижаются вследствие ухудшения структуры металла.  [c.97]


На входном валу цилиндрической передачи зубья шестерен нарезают на среднем участке. Диаметр его определен чаще всего размером значение которого находят из условия надежного контакта торцов заилечика и внутреннего кольца подшипника (см. рис. 3.1). Конструкция вала на среднем участке зависит от передаточного числа и значения межосевого расстояния передачи. При небольших передаточных числах и относительно большом межосевом расстоянии диаметр окружности впадин шестерни больше диаметра т/бп вэла (рис. 10.6, а). При больших передаточных числах и малом межосевом расстоянии df < /бп тогда конструкцию вала вьшолняют по одному из вариантов рис. 10.6, б — д, предусматривая участки для выхода фрезы, нарезающей зубья. Диаметр 2)ф фрезы принимают в зависимости от модуля т.  [c.160]

Примеры конструкций выходных валов редукторов, выполненных по развернутой схеме, показаны на рис. 12.22. Сами валы проектируют с возможно меньшим числом ступеней, обеспечивая осевую фиксацию зубчатых колес на валу посадками с натягом (рис. 12.22, а—в). Определенным недостатком указанных конструкций является необходимость применения при установке колес специальных приспособлений, обеспечивающих то шое осевое положение колес на валу. Поэтому наряду с ними применяют конструкцию вала по рис. 12.22, г, в которой колесо при сборке доводят до упора в з шлечик вала. Во всех вариантах конструкций рис. 12.22 подшипники установлены враспор . Необходимый осевой зазор обеспечивают установкой набора тонких металлических прокладок ] под фланец привертной крышки (рис. 12.22, а, в), а в конструкциях с закладной крышкой — установкой компенсаторного кольца 2 при применении радиального шарикоподшипника (рис. 12.22, б) или н гжимного винта 3 при применении конических роликоподшипников (рис. 12.22, г).  [c.207]

Ведущий вал конического редуктора (рис. 13.7) установлен на конических роликоподшипниках (регулировка по внутренним кольцам). Определить более нагруженного подш1ш-ника и выбрать подшипники по каталогу. Мош,ность на ведуш,ем валу редуктора N = 4,5 квт ы = 100 рад сек средний модуль т = 3,53 ж.и число зубьев 2 = 20 /С = 1,4 (умеренные толчки) Л = 10 ЮО.  [c.222]

Подшипники качения имеют условные обозначения, составленные из цифр и букв. Система основные обозначений подшипников предусмотрена ГОСТ 3189—75. В эт х обозначениях число для подшипников с внутренним диаметром 20...495 мм, состоящее из двух рядом стоящих крайних цифр справа, умноженное на 5, дает диаметр отверстия внутреннего кольца Третья цифра справа (совместно с седьмой, если она имеется) обозначает серию подшипников всех диаметров, кроме малых (до 9 мм). Основная из особо легких серий обозначается цифрой 1, легкая — 2, средняя — 3, тяжелая— 4, легкая широкая — 5, средняя широкая — 6. Четвертая цифра справа обозначает тип подщип4ика радиальный шариковый— О (если нули стоят левее последней значащей цифры, их отбрасывают), радиальный шариковый двухрядный сферический — 1 радиальный с короткими цилиндри 1ескими роликами — 2 радиальный роликовый двухрядный с([)ерический — 3 роликовый игольчатый — 4 роликовый с витыми роликами — 5 радиальноупорный шариковый — 6 роликовый конический — 7 упорный шариковый — 8 упорный роликовый — 9у Конструктивные особенности подшипников обозначаются пятой или пятой и шестой цифрами справа. Цифры, обозначающие Kia точности подшипников 6, 5, 4, 2, ставятся через тире перед у ловным обозначением подшипников цифра О не пишется.  [c.88]

Номинальная динамическая грузоюдъемность С эквивалентна постоянной радиальной нагрузке д/я радиальных и радиальноупорных подшипников или постоянной центральной осевой нагрузке для упорных и упорно-радиальны подшипников, при которой 90 % подшипников из испытуемой па тии способны выдержать без признаков разрушения базовое число оборотов, равное одному миллиону при вращающемся внутреннем и неподвижном наружном кольцах при п>10 мин- .  [c.98]

Кольцо СТ75-50-7 ГОСТ 288—72, где числа означают размеры кольца в мм.  [c.204]

Стандартные подшипники качения по основным признакам разделяют на следующие типы по форме тел качения — на шариковые (см. рис 292, а), роликовые (рис. 292, б, г) игольчатые (рис 292, д, е) в свою очередь, ролики бывают цилиндрические короткие (рис. 293, а) и длинные (рис 293, б), конические с прямолинейной образующей (рис. 293, е), сферические (рис. 293, г), бочкообразные (рис. 293, д), витые (рис. 293, е) и др. по числу рядов тел качения — на однорядные (рис. 292, а—е) двухрядные (рис. 292, ж) и четырехрядные по воспринимаемым нагрузкам — на радиальные (рис. 292, а—ж), радиально-упорные (рис. 292, з, и), упорно-радиальные и упорные (рис. 292, к, л) по важнейшему конструктивному признаку — на самоустанавливающиеся или сферические (рис. 292, ж) и несамо-устанавливающиеся. Сферические подшипники отличаются тем, что внутреннее кольцо вместе с телами, или наружное кольцо  [c.433]

Отвод характеризуется диаметром 3, радиусом закругления осевой линии Л 23 и числом звеньев, из которых составляется отвод, приближеин ) заменяющий кольцо. Крайнюю часть отвода (1), равную половине среднего звена (II), называют стаканом. К стакану прибавляется припуск е для соединения отвода с воздуховодом.В зависимости от диаметра воздуховода принимают 5,. ... 8 средних звеньев в отводе. Порядок построения развертки  [c.33]

Число циклов повторных нагружений в минуту опасной точки дорожки качения невращаю-щегося кольца равно частоте вращения в минуту сепаратора умноженной на число тел качения z, т. е.  [c.350]

Видно, что выше значения Ве г 1 аналитическое описание поля течения усложняется. Становятся существенными инерционные силы, и при Ве 10 происходит отрыв пограничного слоя ) линии тока скручиваются и образуют стационарное вихревое кольцо у кормовой части сферы. Дальнейшее возрастание числа Ве приводит к увеличению размеров и интенсивности вихря. При Ве 100 систе.ма вихрен распространяется за сферой на расстояние около одного диаметра [7801. Влияние инерционных сил продол кает расти, п при Ве 1-50 систе.ма вихрей начинает колебаться. В ла.минарнодг потоке при Ве р 500 систе.ма вихрей отделяется от тела и образует след [822]. Это число Рейнольдса называется нгпкним критическим чпс,лоы Рейнольдса. Вихревые тсольца непрерывно образуются и отделяются от сферы, вызывая периодические изменения поля течения и мгновенной величины силы сопротивления. Линия отрыва пограничного слоя на сфере перемещается, что приводит также к флуктуация.м силы трения.  [c.32]


При анализе реальных конструкций и их кинематических схем выявляются либо дополнительные подвижности И/ , либо избыточные структурные связи q относительно основной схемы механизма с заданным числом степеней свободы U/.i. Из дополнительных подвижностей выделяют местные подвижности звена и местные подвижности группы звеньев W,. Местную подвижность имеют [1лавающие оси, втулки и пальцы, кольца некоторых типов подшипников, блоки, шкивы, ролики в кулачковых механизмах и т. п. Особенность местной подвижности звена заключается в том (см. рис. 2.11, а), что реализация ее не вызывает перемешения остальных звеньев механизма. Местная подвижность звена имеет определенное функциональное назначение, ибо она позволяет, например, уменьшать износ элементов кинематической пары, улучшить условия смазки, повысить коэффициент полезного действия (к.п.д.), надежность, долговечность узлов машин. Общее число местных подвижностей звеньев в кинематической цепи следует выявлять на первоначальной стадии структурного анализа и синтеза механизма.  [c.53]


Смотреть страницы где упоминается термин Число кольца : [c.273]    [c.177]    [c.152]    [c.204]    [c.139]    [c.177]    [c.224]    [c.288]    [c.291]    [c.304]    [c.304]    [c.305]    [c.253]    [c.144]    [c.176]    [c.87]    [c.265]    [c.43]    [c.437]    [c.158]    [c.308]    [c.198]    [c.103]    [c.160]    [c.141]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.0 ]



ПОИСК



Кольцевые системы с большим числом жестком внутреннем кольц

Кольцевые системы с большим числом с кольцами

Кольцевые системы с малым числом с кольцами

Никитин. Зависимость износа верхнего поршневого кольца и цилиндровой втулки дизеля от числа оборотов и максимального давления цикла

Поршневые Зависимость между числом колец и максимальным давлением сжатия

Уплотнения для валов — Ориентировочный колец 197 — Рекомендуемое число манжет

Уплотнения для валов — Орпентировочньгй колец 197 — Рекомендуемое число манжет

Число контактных колец

Число с кольцами - Автоматизация пуска



© 2025 Mash-xxl.info Реклама на сайте