Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кремния хлорид

Никель, кремний. Никель является одним из основных легирующих элементов, повышающих стойкость аустенитных коррозионно-стойких сталей. Это считается доказанным фактом [60]. Многочисленными исследованиями также показано, что кремний оказывает положительное влияние на стойкость этих сталей к КР, особенно в растворах хлоридов.  [c.72]

Кремнистые чугуны. Чугуны, легированные примерно 14% кремния, пригодны для работы в средах, содержащих соляную, серную, азотную, муравьиную, уксусную и другие кислоты, в морской воде, шахтных водах и растворах хлоридов различной концентрации и при различных температурах. Наиболее агрессивными по отношению к этим чугунам являются соляная кислота при повышенной температуре, фтористоводородная кислота, свободные галогены, фосфорная кислота, содержащая примеси фтористоводородной кислоты, расплавы щелочей, кипящая азотная кислота и царская водка. Твердые и хрупкие кремнистые чугуны обрабатываются с трудом, однако их химическая устойчивость настолько высока, что они стали незаменимым материалом для изготовления насосов, охлаждающих устройств и трубопроводов.  [c.103]


Диффузию можно осуществлять в парах тетрахлорида кремния или путем погружения в смесь из кремния или ферросилиция с добавкой трихлорида железа или хлорида натрия при температурах до 1100°С.  [c.107]

Цинковая пыль — порошок серого цвета, представляющий собой почти чистый цинк (95—97%), содержащий оксид цинка (2—4,5%) и незначительные примеси свинца, кадмия, железа, кремния. Очень небольшая часть цинка (до 0,1%) находится в виде хлорида и сульфата.  [c.67]

Состав технической воды, применявшейся для пропитки набивки и выполнявшей роль электролита, был следующий жесткость -4,7 мг-экв/л щелочность - 4,2 мг-экв/л хлориды - 17 мг/л железо - 0,196 мг/л кремний - 6,02 мг/л соли - 200 мг/л.  [c.67]

Неметаллические нитриды бора и кремния более стойки против окисления по сравнению с металлоподобными нитридами. Так, например, образцы из нитрида бора оказались стойкими при окислении на воздухе при 700° С в течение 60 при 1000° С— в течение 10 ч в хлоре при 700° С в течение 40 ч. Концентрированная серная кислота при комнатной температуре не действует на образцы из нитрида бора в течение 7 суток. Фосфорная, плавиковая, азотная концентрированные кислоты, а также четыреххлористый углерод, газолин и бензин действуют очень слабо. Образцы, изготовленные из нитрида кремния, могут находиться в продолжение 500 ч в соляной, азотной, серной и фосфорной кислотах любых концентраций, не претерпевая существенных изменений. На них также не действует хлор и сероводород при 1000° С, расплав хлоридов натрия и калия при 800° С, расплав смеси азотно-и азотистокислого натрия при 350° С. В кипящем 50%-ном растворе едкого натра образцы из нитрида кремния стойки в продолжение 115 ч, в расплаве хлоридов натрия и калия при 900° С — 144 ч, в смеси фторидов натрия и циркония при 800° С — 100 ч, в смеси 3%-ной плавиковой и 10%-ной азотной кислот при 70° С — в продолжение более 100 ч.  [c.431]

В эксплуатации определяют и другие показатели качества пара, например содержание хлоридов, кремне-кислоты, фосфатов.  [c.34]

Изготовление я применение световодов. Волоконные С. на основе кварцевого стекла с низкими оптич. потерями изготовляют методом хим. осаждения из газовой фазы. В качестве исходных соединений используются кислород и хлориды кремния, германия, фосфора и др. Получаемая этим методом заготовка диам. 20—30 ми и длиной <400—1000 мм перетягивается в волоконный С. диам. 100 мкм с одновременным нанесением на него защитно-упрочняющей оболочки.  [c.462]


Плазмохимические порошки карбидов металлов, бора и кремния обычно получают взаимодействием хлоридов соответствующих элементов с водородом и метаном или другими углеводородами в аргоновой высокочастотной или дуговой плазме а нитриды — взаимодействием хлоридов с аммиаком или смесью азота и водорода в низкотемпературной СВЧ-плазме. С помощью плазмохимического синтеза можно получать также многокомпонентные ультрадисперсные порошки, представляющие собой смеси карбида и нитрида, нитрида и борида, нитридов разных элементов и т. д.  [c.24]

Элементарный кремний можно получать электролизом двуокиси кремния в расплаве окислов щелочных металлов (31, смеси хлоридов натрия и алюминия (201 или хлорида алюминия 11021.  [c.332]

Плазмохимический синтез [24]. Синтез в низкотемпературной плазме осуществляют при высоких температурах (до 6000 — 8000 К), что обеспечивает высокий уровень пересыщения, большие скорости реакций и конденсационных процессов. Используются как дуговые плазмотроны, так и высоко- и сверхвысокочастотные (СВЧ) генераторы плазмы. Дуговые аппараты более производительны и доступны, однако СВЧ-установки обеспечивают получение более тонких и более чистых порошков. Схема такой установки приведена на рис. 4.6. В качестве исходных продуктов для плазмохимического синтеза используются хлориды металлов, металлические порошки, кремний- и металлоорганические соединения. СВЧ-установки типа изображенной на рис. 4.6 и плазмохимические порошки нитридов, оксидов и других соединений изготавливаются фирмой ЗАО Наноматериалы (Черноголовка, Московская область).  [c.123]

Кроме оксида титана хлор взаимодействует с кислородными соединениями других элементов, присутствующих в исходной шихте. При этом образуются летучие хлориды железа, кремния, ванадия и др.  [c.389]

Для построения эталонной кривой при количественном анализе бокситов в качестве стандартных материалов пригодны фторид стронция, хлорид натрия и кремний. Фторид кальция также годится, если боксит не содержит бемита.  [c.31]

Флюсы для сварки легированных и высоколегированных сталей должны обеспечивать минимальное окисление легирующих элементов в шве. Для этого приме няют плавленые и керамические пизкокремпистые, бескреинистые и фторидные флюсы. Их шлаки имеют высокое содержание СаО, СгР и А1,0ч. Плавленые флюсы изготовляют из плавикового шпата, алюмосиликатов, алюминатов, путем сплавления в электропечах. Их шлаки имеют основной характер. Керамические флюсы приготовляют из порошкообразных компонентов путем замеса их на жидком стекле, гранулирования и последующего прокаливания. Основу керамических флюсов составляет мрамор, плавиковый шпат и хлориды щелочноземельных металлов. В них также входят ферросплавы сильных раскислителей (кремния, титана, алюминия) и легирующих элементов и чистые металла. Шлаки керамических флюсов имеют основной или пассивный характер и обеспечивают получение в металле шва заданное содержание легирующих элементов.  [c.194]

Покрытие наносится на металл из водного шликера окунание.м. Шликер для нанесения готовится следующим образом. Фритта I и плавленая двуокись кремния, взятые в указанно.м выше соотношении, подвергаются помолу в фарфоровом барабане шарами совместно с небольшим количеством хлорида бария, предназначенным для улучшения смешивания компонентов эмали. Температура обжцгд (рмери 1000—1050 К, время обягига 20 мин. Однако в зави-  [c.103]

Условие развития электрохимической коррозии — это контакт металла с электролитом, роль которого выполняет пластовая вода, содержащая определенное количество примесей и представляет собой сложные многокомпонентные системы. В пластовых водах нефтяных месторождений содержатся вещества, находящиеся в истинно растворенном состоянии газообразные вещества, растворенные в воде (углеводородные и сернистые газы, азот) вещества, находящиеся в воде в коллоидно-растворенном состоянии (двуокись кремния, гидрат окислов железэ и алюминия). Основные компоненты, растворенные в воде,— это хлориды, суль-  [c.124]

К химическому методу относится также контактное осажденрге металлов из раствора. Для листовых полуфабрикатов применяется горячий способ нанесения покрытий из расплавов цинка, олова, алюминия. Металлические покрытия должны обладать хорошей пластичностью. Пластичность покрытия определяется промежуточным слоем интерметаллидов, образующихся в результате реактивной диффузии. Для регулирования пластичности в расплавы вводятся добавки других металлов. В промышлен-иости применяется также термодиффузионное поверхностное легирование сталей хромом, алюминием, кремнием и другими элементами G целью повышения их жаростойкости и коррозионной стойкости в агрессивных средах. Процесс проводится при высоких температурах из измельченной твердой или газовой фазы хлоридов или других соединений соответствующих металлов.  [c.49]


Ферросилид представляет собой сплав железа с 14 % Si и 1 % С. Он имеет плотность 7,0—7,2 г-см . При протекании анодного тока на поверхности формируются покрытия, содержащие кремнезем (двуокись кремния), которые затрудняют анодное растворение железа и способствуют образованию кислорода по реакции (8.1). В морской и солоноватой воде образование поверхностного слоя на ферросилиде оказывается недостаточным. Для улучшения стойкости при работе в соленых водах в сплав добавляют около 5 % Сг, 1 % Мп и (или) 1—3 % Мо. Ферросилидовые анодные за землители ведут себя в воде с большим содержанием хлоридов хуже, чем графит, потому что ионы хлора разрушают пассивное покрытие на поверхности этого сплава. Поэтому предпочтительными областями применения таких сплавов являются грунт, солоноватая и пресная вода. Средняя допустимая токовая нагрузка составляет 10—50 А-м-2, причем потеря от коррозии в зависимости от условий эксплуатации не превышает 0,25 кг-Д- -год-. Ввиду малости коррозионных потерь материала ферросилидовые анодные заземлители нередко укладывают непосредственно в грунт [6] необходимо позаботиться об отводе образующихся газов, потому что иначе сопротивление растеканию тока с анодов получится слишком большим [7].  [c.202]

Потенциально кислые соединения, опасные своим разрушающим действием на металл оборудования в зонах образования первичногол конденсата, периодически определяют при отборе проб конденсата из проточной части турбин. При этом концентрация коррозионно-агрессивных соединений на два порядка выше в этих зонах, чем в конденсате турбин (pH снижается до 4,0— 5,0). При химическом анализе отложений на лопатках, разрушенных в результате коррозии, находят до 12 % хлоридов (остальное — соединения кремния и натрия).  [c.184]

Продукты корэозии состояли из хлористой меди СиС -НаО, окси-хлорида меди Сиз(ОН)зС1, гидрооксида никеля Ni(0H)2, меди, алюминия, никеля, железа, кремния, натрия, магния, марганца, кальция, хлор-и сульфат-ионов.  [c.279]

Коррозионные свойства хромистых сталей во многом зависят от содержания в них углерода. При увеличении содержания углерода до 0,3-0,4 % в сталях с 13-15%-ным содержанием хрома наблюдается резкое понижение коррозионных свойств. Следует иметь в виду, что высокохромистые стапи после закалки имеют более высокую коррозионную устойчивость, чем в отожженном состоянии. Никель сам по себе легко активируется ионами хлора, однако введение его в сплав железо-хром резко повышает сопротивление сплава активирующему действию хлоридов благодаря приданию стали аустенитной структуры, обладающей повышенной стойкостью в растворах хлоридов, т.е< стойкостью к точечной коррозии. Наиболее устойчиво сохраняется в растворах хлоридов пассивное состояние стали с полностью аустенитной структурой. Молибден и кремний препятствуют активированию нержавеющих сталей ионами хлора.  [c.72]

Таким образом, показана возможност ь созданий армирующих компонентов чдля композиционных материалов путем никелирования поверхности углеродных волокон, предварительно покрытых карбидом кремния. Для никелирования армирующих компонентой рекомендован раствор, содержащий гексагидрат хлорида, никеля, хлорид аммония, гипофосфит натрия, лимоннокислый на1грЙй и сульфид свинца. Показано, что технологический процесс нанесения никелевого покрытия методом химического восстановления на прочность нсходнЬ1х волокон не влияет. Установлено резкое падение прочности волокна при Толщине покрытия из кар бйда кремния более 0,010 мкм.  [c.213]

Механизм процесса силицирования заключается в следующем при высоких температурах вследствие диссоциации образующегося на поверхности стальной детали хлорида кремня (S1 I4) выделяется атомарный кремний, который и диффундирует в железо  [c.528]

Хлориды увеличивают скорость коррозии, а при соотношении молярных масс ионов С1 и ионов S0 -4 более 1/5 скорость коррозии становится катастрофической. При наличии хлоридов в отложениях на поверхности аустенитных сталей скорость их окисления при температуре более 570 С может быть равной скорости окисления перлитных сталей. При этом окислы хрома взаимодействуют с расплавом хлоридов и улетучиваются. При наличии хлоридов процесс коррозии ускоряется в различной степени, в зависимости от того, с какими щелочными или щелочноземельными элементами они связаны. Активность хлоридов увеличивается в следующей последовательности a lj, КС1, Na l и Li l. При наличии значительного количества хлоридов на поверхности аустенитной стали происходит отслоение окалины, она перестает выполнять защитные функции и утонение стенки протекает во времени по линейному закону. Присадки к аустенитной стали кобальта, молибдена, ниобия, кремния, меди и титана не дают возможности существенно повысить коррозионную стойкость стали. То же можно сказать о повышении содержания хрома в аустенитной стали, диффузионном хромировании и алитиро-вании поверхности труб.  [c.58]

Образование первичных отложений может начинаться с конденсации (или десублимации) диффундирующих к относительно холодным трубам паров минеральных веществ, содержащихся в угле. Это парообразные соединения щелочных металлов (сульфаты, хлориды, карбонаты, гидроокиси калия и натрия [45—50], моноокись кремния, которая в отложениях ош сляется до двуокиси, и другие кремнистые соединения [33, 34, 46, 67]). При этом на поверхности отлагаются мельчайшие (субмикронные) частицы вещества, которые удерживаются силами молекулярного притяжения или адгезии (в зависимости от агрегатного состояния).  [c.56]

Следующей по степени влияния на свойства шлака, является окись натрия NajO. Натрий вносится в нефть с солеными буровыми водами в форме хлоридов и в зависимости от технологии переработки содержание его в мазуте меняется в весьма широких пределах. Соединения натрия легкоплавки и при горении возгоняются. Окислы никеля, кремния и железа, как правило, содержатся в топливе в небольших количествах и влияние этих компонентов на свойства шлака, по-видимому, незначительно [Л. 7-14].  [c.182]


В [6, 7 ] рассмотрен процесс очистки щелочных растворов алюминия, полученных в результате выщелачивания. Гранулированный титаножелезистый магнетит, содержащий алюминий, хром, ванадий и кремний, обжигают с карбонатом натрия и выщелачивают водой. Раствор направляют на экстракционную переработку. Щелочной раствор с pH 13, приводят в контакт с четвертичным амином для удаления хрома. После промывки органического раствора хроматом натрия и реэкстракции хрома хлоридом натрия получают хром высокой чистоты. Его кристаллизуют в виде Na2 r04-41 20. Следующая стадия переработки состоит в экстракции ванадия также при pH 13 четвертичным амином, промывке органического раствора ванадатом натрия и извлечении ванадия высокой чистоты реэкстракцией и осаждением аммиаком с хлоридом аммония.  [c.107]

Непрерывные волокна из оксида алюминия имеют либо структуру шпинели ( ) -А12 0з), либо структуру а-Л12 0з. Для армирования материалов могут использоваться оба указанных типа непрерывных волокон из оксида алюминия [24—25]. Их физико-механические свойства приведены в табл. 8.8, а на рис. 8.12 показаны их микрофотографии, полученные методом растровой электронной микроскопии. Волокна из оксида алюминия со структурой шпинели изготавливают путем спекания в воздушной среде волокон, полученных прядением по мокрому методу из раствора, содержащего полимер алюминийорганического соединения и кремнийорганическое соединение. Такие волокна состоят из микрокристаллов размером порядка 10 нм, сохраняют стабильную структуру до высоких температур и содержат около 15 масс. % оксида кремния. Волокна из а-Д12 Оз также изготовляют спеканием в воздушной среде волокон, полученных прядением из суспензии мелкодисперсного порошка а-Л12 0з в основном хлориде алюминия. Агломераты частиц имеют размер 0,5 мкм. Достоинствами этих двух типов армирующих волокон из оксида алюминия по сравнению с углеродными волокнами являются электроизоляционные свойства, бесцветность, стабильность свойств на воздухе при высоких температурах и при контакте с расплавленными металлами. Их недостаток — сравнительно высокая плотность. Различие структуры указанных двух типов непрерывных волокон из оксида алюминия приводит к различию их физических свойств. Волокна со структурой шпинели имеют большую прочность и поддаются текстильной переработке для получения ткани и т. д. Эти волокна имеют меньшую плотность, чем волокна из a-Al2 О3. С другой стороны, волокна из a-Al2 О3 имеют более высокий модуль упругости. Различия этих двух типов волокон подобны различиям между двумя типами углеродных волокон карбонизованными и графитизированными.  [c.280]

Возможны также случаи, когда летучесть окисла или другого соединения, возникшего на поверхности (МоОз, СиО, AgaO и др.), превышает летучесть самого металла. Поэтому наблюдаемая иногда аномально высокая скорость сублимации, не соответствующая давлению пара исследуемого вещества при данной температуре, фактически является результатом суммарного действия гетерогенных реакций и собственно сублимации. Именно образованием высоколетучих соединений объясняется, по-видимому, тот факт, что скорость убыли массы кремния, нагретого до 1100° С в парах теллура, превышает скорость его сублимации в вакууме более чем в 10 раз [397]. В литературе описаны аналогичные случаи ускоренного испарения золота и серебра, которое также было вызвано главным образом возникновением летучих промежуточных соединений — окислов, хлоридов и др.  [c.432]

При диффузионном силицйровании металлосодержащей средой служит порошок ферросилиция или газ, состоящий из хлоридов кремния. Насыщение кремнием делает поверхность изделия коррозионностойкой. При диффузионной металлизации возможно насыщение стали и другими металлами, например бором, бериллием и т. д., а также сразу двумя металлами, например алюминием и хромом.  [c.293]

Порошки металлов в ультрадисперсном состоянии получают в результате восстановления их оксидов водородом, углеродом или конвертированным газом. Кроме того, ультрадисперсные порошки металлов получают восстановлением хлоридов металлов водородом, переконденсацией массивных порошков. Частицы НП имеют субмикрокристаллические размеры вследствие того, что они кристаллизуются из газовой фазы с высокой скоростью. Коагуляция частиц не происходит из-за малой продолжительности их нахождения в плазмотроне. В качестве исходного сырья используют материалы достаточно низкой стоимости, например маршалит (измельченный до частиц размером 70...100 мкм кварцевый песок 5102) при производстве НП карбида кремния.  [c.257]

Силицирование — процесс диффузионного насыщения стали кремнием в соответствующей среде, обеспечивающий повышение коррозионной стойкости и жаростойкости поверхностей стальных изделий, а также резкое увеличение жаростойкости молибдена и некоторых других металлов и сплавов. Силицирование проводят в порошкообразных смесях, состоящих из 60 % ферросилиция, 30 % окиси алюминия и 1 % хлористого аммония, а также в газовой среде во вращающихся ретортах, в которых происходит разложение хлорида кремния (Si l ), при 950-1050 °С с выдержкой 2-5 ч. Толщина силицированного слоя 0,5-1мм. Твердость 200-300 HV.  [c.229]


Смотреть страницы где упоминается термин Кремния хлорид : [c.114]    [c.302]    [c.321]    [c.144]    [c.71]    [c.365]    [c.229]    [c.321]    [c.565]    [c.266]    [c.330]    [c.587]    [c.638]    [c.924]    [c.17]    [c.42]    [c.392]    [c.233]    [c.278]   
Коррозионная стойкость материалов в галогенах и их соединениях (1988) -- [ c.114 ]



ПОИСК



Кремний

Кремния хлорид о-Ксилилхлорид, р-ксилилхлорид, пксилилхлорид

Хлориды



© 2025 Mash-xxl.info Реклама на сайте