Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вязкость остаточная

Удлинение при разрыве жесткие материалы эластомеры гибкие пластики Разрушающее напряжение при изгибе Ударная вязкость Остаточная деформация при сжатии Р, Ps Ьпр Ег tg6  [c.318]

Закалка с последующим высоким отпуском называется у л у ч ш е н и е. м. Улучшенные стали обладают высокими показателями пределов текучести, выносливости и ударной вязкости. Остаточные напряжения в результате 1,5—2-часовой выдержки практически полностью снимаются, но при этом снижается твердость.  [c.120]


Для определения механических свойств (плотности, прочности, ударной вязкости, остаточной деформации сжатия, температуры хрупкости и др.) и ряда физико-химических свойств, в том числе тепловых, электрических и др. Необходимость в СО обусловлена тем, что результаты подобных испытаний сильно зависят от действия трудно стабилизируемых условий, а также тем, что одинаковые по назначению официальные методы испытаний, принятые в разных странах, нередко существенно различаются по принципу испытания.  [c.54]

Отпуск — это процесс термической обработки, связанный с изменением строения и свойств закаленной стали при нагреве ниже критических температур. При отпуске происходит распад мартенсита (пересыщенного твердого раствора С в а-Ре после закалки) и остаточного аустенита. Вследствие перехода к более устойчивому состоянию образуются структуры продуктов распада УИ и Л, смеси а-Ре и карбидов. При этом повышаются пластичность и вязкость, снижается твердость и уменьшаются остаточные напряжения в стали.  [c.107]

Суммарный выход дистиллятных и остаточных масел, определенный методом адсорбционного разделения, равен 23%. Индекс вязкости дистиллятных масел 83, остаточного 87.  [c.492]

Для оценки работоспособности фонтанной арматуры какого-либо месторождения, произведенной одной и той же фирмой и имеющей одинаковый типоразмер, в работах ВНИИГАЗа рекомендуется [138] производить разрезку корпусных деталей и запорных элементов фонтанной арматуры одной из скважин. При этом определяют химический состав и механические свойства материалов, включая ударную вязкость. Принимая во внимание фактические рабочие давления газа и определенные методами толщинометрии значения толщины стенок элементов оборудования, рассчитывают рабочие напряжения в металле корпусных элементов и определяют остаточный ресурс элементов фонтанной арматуры.  [c.178]

Во-первых, повышается прочность поверхностного слоя, но сохраняется вязкость нижележащих слоев, а, во-вторых, в поверхностном слое создаются остаточные сжимающие напряжения, препятствующие образованию трещины. В результате обработки предел выносливости в оптимальных случаях может увеличиться в несколько раз, а долговечность детали - в десятки раз. Причем наибольший эффект поверхностная обработка дает для деталей, имеющих заметную концентрацию напряжений.  [c.96]

Реология - совокупность методов исследования течения и деформации реальных сред, например, жидкостей, обладающих структурной вязкостью, дисперсных систем, обладающих пластичностью. В реологии рассматриваются процессы, связанные с необратимыми остаточными деформациями тел (последействие, ползучесть и др.), развивающимися во времени.  [c.153]


Теперь возьмем стержень из стеклопластика или, для конкретности, широко применяемое и весьма популярное у рыболовов-спортсменов стеклопластиковое удилище. Оно изготовлено из плотно уложенных в продольном направлении тончайших стеклянных нитей, соединенных эпоксидным связующим. Каждая нить обладает той же хрупкостью, что и обычный стеклянный лист. Эпоксидная матрица также достаточно хрупкая. Композиция пластических свойств не приобретает. Если стеклопластиковый стержень подвергнуть испытанию на растяжение, остаточные деформации при разрыве будут ничтожными. И вот на такой композиционный материал нанесем алмазом поперечную риску. При изгибе удилища ничего похожего на поведение стеклянного листа мы не обнаружим. Развитие трещины блокируется поверхностями раздела между стеклом и матрицей. Композиция, сохранив хрупкость, приобрела вязкость.  [c.370]

Следующая характеристика пластичности металла — деформируемость. Деформируемость — свойство металла остаточно изменять форму без макроразрушения в конкретном процессе обработки давлением. Вводя эту характеристику пластичности, исследователи еще в большей степени, чем для стандартных испытаний ( удар -вязкость, растяжение, кручение, проба Эриксена и т., стремятся привести в соответствие схему напряженно состояния при испытании к схеме напряженного состоя ния в реальном процессе обработки давлением.  [c.490]

Нанесение износостойких покрытий - наиболее распространенный и хорошо разработанный метод улучшения триботехнических свойств материалов. На его базе успешно реализованы различные технологические решения, позволяющие существенно улучшить качество поверхностного слоя и повысить прочность сцепления покрытия с подложкой. Конструирование многослойных покрытий является перспективным направлением поверхностной модификации, позволяющим плавно изменять свойство композиции по глубине и исключить отрицательное влияние хрупкого переходного слоя. Материал подслоя выбирают из соображений химической совместимости с основой, а также в целях исключения образующихся в граничной области хрупких интерметаллидных соединений. Идея создания многослойных покрытий реализована для повышения прочности поверхностных слоев, релаксации остаточных напряжений в модифицированных слоях, а также для увеличения вязкости и трещиностойкости.  [c.262]

При фрикционно-упрочняющей обработке в поверхностном слое деталей формируются только нормальные остаточные напряжения. Глубина распространения и величина остаточных сжимающих напряжений, полученных обкаткой, при прочих равных условиях повышают вязкость разрушения стальных деталей.  [c.116]

Термомеханическая обработка сплавов ОТ4 и ОТ4-1 системы титан— алюминий — молибден приводит к резкому возрастанию пластичности и вязкости этих материалов и, в отличие от сплава ВТЗ-1, к некоторому снижению их прочности. Максимальные значения характеристик пластичности закаленных сплавов ОТ4 и ОТ4-1 достигаются после 50% предварительной деформации, что также соответствует максимальному количеству остаточной (3-фазы [100].  [c.69]

Одним из необходимых условий, исключающих пористость, является полная пропитка каркаса, которая особенно затруднена при пропитке его смолами высокой вязкости. С увеличением плотности материала пористость снижается (рис. 6.5). Остаточная пористость для Мод 3 составляет 8—10 % при плотности 1,6—1,65 г/см . Высокая плотность материала (порядка 1,7 г/см ) достигается многократным повторением всех этапов цикла пропитки, отверждения,  [c.171]

Поскольку предел пропорциональности материала образца в результате наклепа повышается, а остаточное удлинение понижается, то это свидетельствует о том, что наклеп улучшает упругие свойства материала, но в то же время понижает его пластичность и вязкость. Если повторное нагружение образца произвести не сразу, а через некоторый промежуток времени, то обнаруживается повышение не только предела пропорциональности, но и временного сопротивления материала. В этом случае предел пропорциональности возрастает еще больше, а диаграмма повторного нагружения изобразится пунктирной линией, параллельной кривой ЕВЕ.  [c.74]


Необходимо оценить роль покрытия в изменении вязкости разрушения - основного металла. С одной стороны, стеснение пластической деформации, увеличение концентрации поверхностных дефектов, возникновение остаточных напряжений растяжения, создание дополнительных препятствий для дислокаций на границе с основным металлом — все эти обстоятельства, возникшие при формировании покрытия, должны снизить уровень вязкости разрушения. С другой — ряд положительных факторов (благоприятные на-  [c.153]

В случае нафева пластическое затупление трещины начинается при более низком уровне напряжения, поскольку нагрева оказывается достаточно, чтобы частично устранить влияние остаточных напряжений и облегчить начало скольжения в пределах зоны пластической деформации при более низком уровне напряжения. В результате материал способен начать разрушения при более низком уровне напряжения и не может реализовать свою вязкость разрушения, как это было при комнатной температуре.  [c.562]

К отрицательным качествам следует отнести опять же низкий коэффициент линейного расширения, приводящий к остаточным температурным напряжениям в тех случаях, когда в конструкцию заложены металлические прокладки, например, в местах соединений или когда графит используется как самостоятельный несущий элемент. Другой недостаток углеродных волокон — низкая ударная вязкость. Это создает опасность повреждений при производстве или обслуживании от случайных ударов инструментом или во время транспортировки.  [c.85]

На степень стабилизации остаточного аустенита и ударную вязкость хромистых (до 18% Сг) и никелевых (до 15% Ni) сталей с различной концентрацией углерода существенно влияет температура отпуска. Снижение концентрации углерода в этих сталях уменьшает склонность аустенита к стабилизации и необратимой хрупкости.  [c.31]

В настоящее время в Советском Союзе изготавливаются поливинилхлоридные лаковые смолы средней вязкости ПСХ-ЛС и низкой вязкости ПСХ-ЛН. Перхлорвиниловые лакокрасочные покрытия практически высыхают при комнатной температуре в течение 2—3 ч, но полное высыхание покрытий происходит только через 7 сут вследствие удержания ими остаточного рас-  [c.51]

Трудно предложить одно общее правило использования характеристик разрушения, полученных в настоящей работе, поскольку в каждом случае нужно учитывать ряд взаимосвязанных факторов. Например, остаточные напряжения после сварки, концентрация напряжений, обусловленная конструкцией детали, специфическое напряженное состояние при сложной схеме нагружения — все это в процессе эксплуатации влияет на трещину. Поэтому каждый случай требует тщательного анализа. С тем, чтобы подчеркнуть значение данных, приведенных в табл. 2, целесообразно свести вязкость разрушения к какому-нибудь более простому для понимания параметру, например к максимальному напряжению, которое можно приложить к образцу с тре-  [c.57]

Изменение температуры незначительно влияет на вязкость в надрезе, и значения этой характеристики уменьшаются с увеличением ширины образца. Остаточная прочность очень широкой пластины с таким надрезом, какой может встречаться в реальной конструкции, может быть оценена при испытании образца шириной 400 мм с поверхностным надрезом установлено, что для такого образца величина отношения составляет 1,3. Графическая  [c.130]

Концепция упругости, устанавливающая зависимость напряжения от деформации, рассматриваемой как отклонение от некоторой предпочтительной формы или конфигурации отсчета, означает, что материал чувствителен к отклонениям от этой предпочтительной формы независимо от того, какое время прошло с тех пор, как эта форма реализовалась на самом деле (действительно, может оказаться, что такая форма никогда не существовала, как это демонстрируется наличием остаточных напряжзний в затвердевших металлах, полученных кристаллизацией из расплава). В другом предельном случае концепция вязкости, устанавливающая зависимость напряжения от скорости деформации (выраженную уравнением (2-3.1)), прздполагает, что материал чувствителен только к мгновенной скорости изменения его формы, в то время как конфигурации, реализовавшиеся в люэой момент в прошлом, за исключением момента наблюдения, несущественны.  [c.75]

Понижение порога хладноломкости и увеличение содер ка-ния волокна (%) в изломе приводит к поеышепию механических свойств. Наиболее простым решением вопроса является введение в сталь никеля, элемента, — понижающего температуру перехода в хладноломкое состояние и поэтому увеличивающего долю волокна в изломе в высокояроч.нон стали. В связи с этим улучшаются вязкие свойства, однако в обычных сталях нельзя увеличить содержание никеля свыше 4%, так как появляется остаточный аустенит (имеющий пониженную прочность, а продукты его распада пониженную вязкость), понижается то1Ч,ка A i и нельзя провести высокий отпуск. Решение задачи применения высоконикелевой стали состояло в одновременном легировании стали никелем и кобальтом. Кобальт повышает мартенситную точку (рис. 303) и уменьшает поэтому количество остаточного аустенита (рис. 303,6). Одновременно кобальт повышает точку A i и позволяет провести операцию высокого отпуска.  [c.392]

Для разложения остаточного аустенита после цементации применяют высокий отпуск при 630—640 °С, после чего следует закалка с пониженной температуры и низкий отпуск. Такая обработка также обеспечивает высокую твердость цементованного слоя. Структура сердцевины должна состоять из низкоуглеродистого мартенсита или нижнего бейнита. Низкоуглеродистый мартенсит обеспечивает повышенную прочность и достаточную вязкость сердцевины. Сохранение обособленных участков или сетки феррита нежелательно, так как это сопровождается значительным снижением ирочности, пластичности и вязкости цементованных деталей Твердость сердцевины для различных сталей составляет HR 20—40,  [c.238]


Кремний замедляет нр оцесс отпуска мартенсита и является полезным легирующим элементом для сталей, нодвер1аемых изотермической закалке. Стали, содержащие кремний, после изотермической закалки имеют высокую вязкость и пониженную чувствительность к надрезу. Это об1>ясняется тем, что в процессе промежуточного превращения возрастает количество высокоуглеродистого остаточного аустенита и повышается вязкость бейнита вследствие уменьшения в а-фазе содержания углерода.  [c.256]

Суммарные выходы дистнллятных и остаточных масел или их компонентов из основных нефтей центральной и северной частей Пермской области (с индексом вязкости 83 — 87) составляют 20— 21%), а из высокосернистых нефтей южной часги области (с индексом вязкости в основном 82—85) — от II до 15%, т, е. заметно меньше, чем из нефтей первой рассматриваемой группы.  [c.25]

Нефти Куйбышевской области такие, как михайловская девон ская, Дмитриевская девонская, являются не менее благоприятныр сырьем для получения масел, чем туймазинская девонская нефть Суммарный выход дистиллятных и остаточных масел из указан ных нефтей Куйбышевской области составляет от 19 до 24%- Ин дексы вязкости дистиллятных масел лежат в пределах 83—88,Е остаточных масел 83—94.  [c.218]

Выход дистиллятного масла, выделенного адсорбционным методом, составляет 15,6%), остаточного, отвечающего требованиям технических iHopM на масло МК-22 (индекс вязкости 86), 5,47о.  [c.277]

Это положение относится к контролю способами приложенного поля и остаточной намагниченности. Различие заключается в следующем. В первом случае суспензия стекает с детали во время ее намагничивания. Этот способ применяют, когда магнитные характеристики материала детали таковы, что при выключении намагничивания магнитное поле дефекта уменьшается до такой степени, что не может удерживать частицы порошка. В случае, когда при намагничивании деталь сильно нагревается или имеется опасность прижогов мест соприкссновения с токовыми контактами, намагничивание можно периодически прерывать. При этом время действия магнитного поля (время прохождения тока по детали) может составлять 0,1—0,5 с, а перерывы 1—2 с. Чем меньше вязкость суспензии, тем длительнее должно быть время действия тока и меньше перерывы (для водной суспензии соответственно 0,3—0,5 и 1 с).  [c.41]

Анализируя роль покрытия в конструктивной прочности основных элементов корпуса реактора, делается вывод [238] о том, что нанесение наплавки из аустенитной стали на сталь 15ХНМФА обеспечивает такой уровень пластичности и вязкости в наплавке и зоне термического влияния, при котором, несмотря на присутствие высоких остаточных напряжений, наличие наплавки не снижает трещиностойкости.  [c.152]

Медленное деформирование материала может приводить к росту трещины не только по плоскостям скольжения, но также и по границам фрагментов Б условиях интенсивного наклепа материала и к потере когезивной прочности в субграницах. Такой вид разрушения сосуда под давлением был зарегистрирован в условиях эксплуатации. Трещина распространялась в сплаве 17Х4НЛ по границе раздела двухфазовой структуры между прослойками феррита (ферритная полосчатость) и мартенситной матрицей, В условиях двухосного растяжения под давлением и длительной выдержки под нагрузкой происходило вязкое отслаивание феррита по приграничным зонам. Трехточечный изгиб образцов в виде пластин, вырезанных из гидроагрегата вдоль образующей его цилиндрической части, показал, что при скорости деформации 0,1 мм/мин образцы имеют высокую пластичность с остаточной деформацией около 8 % в зоне разрушения. Рельеф излома имел полное подобие рельефу эксплуатационного излома. Это означало, что в условиях эксплуатации вязкость разрушения была реализована полностью, хотя на мезоскопическом масштабном уровне (0,1-10 мкм) разрушение было квазихрупким. Пластическая деформация материала была реализована за счет деформации зерен феррита с формированием неглубоких ямок в момент отслаивания феррита по границам мартенситных игл, что привело к столь значительному утонению стенок ямок, что их можно было выявить только при увеличении около 10,000 крат при разрешении растрового электронного микроскопа около 10 нм.  [c.92]

Однако имеются сведения, что при изготовлении пресс-форм для полимерных материалов лучше иметь в поверхностном слое FeB. Получение только одной боридной фазы спососбствует устранению остаточных напряжений и дает однородную поверхность. В этих случаях под боридной фазой обычно образуется буферный слой высокой твердости, который способствует повышению ударной вязкости. При одинаковых условиях фаза FeB образуется интенсивнее в средне- и высокоуглеродистых сталях по сравнению с низ-коуглеродистыми сталями.  [c.46]

Эффективность применения указанных технологических приемов для сглаживания электрохимической гетерогенности сварного соединения во многом зависит от способности основного металла и релаксации остаточных напряжений. В этом направлении представляются весьма перспективными малоуглеродистые стали мар-тенситного класса, обладающие высокой прочностью, пластичностью и ударной вязкостью, например, сталь 07ХЗГНМ (0,1% С 3,0% Сг 0,8—1,2% Ni 0,3—0,35% Мо). Малоуглеродистый мартенсит этой стали имеет тонкую субмикроструктуру, состоящую из пакетов параллельных пластин с высокой плотностью дислокаций, обеспечивающей высокие прочностные характеристики (о з = 1150 МПа, 00,2 = 900 МПа). Однако низкое содержание углерода (от 0,05 до 0,1%) обусловливает сохранение подвижности значительной доли дислокаций, образующихся в процессе у -> а-превращения, и облегчает релаксацию напряжений путем микропластических деформаций. Релаксации напряжений способствует высокая температура начала мартенситного превращения (480 °С и выше). Сталь имеет низкую критическую скорость закалки. Она закаливается с прокатного нагрева, сохраняя при этом высокие технологические свойства (б = 20%, =  [c.220]

Аварийные повреждения магистральных нефтепроводов внешне характеризуются большим разнообразием (по основному металлу, по заводскому шву, по монтажным швам, в различных точках трубы и тройниковых соединений). Также различны и сроки эксплуатации до возникновения аварий от нескольких месяцев до десятка лет. Однако пояти все нарушения имеют общие признаки. Если исключить случаи явных дефектов и брака, то можно считать, что большая часть аварий происходит без видимых причин и часто при давлениях ниже рабочих. Отсутствуют пластические макродеформации по периметру трубы и у кромок в местах максимального раскрытия трещин в центральной части разрыва, а разрушения часто имеют очаговый характер. Механические свойства металла, в том числе твердость и ударная вязкость, в очаговых зонах (длиной порядка 150—250 мм) остаются прежними, и охрупчивания металла из-за потери свойств (старение, наводоро-живание) не происходит. Это значит, что если бы разрушение было чисто механическим и вызывалось однократной (статической) нагрузкой, то должны были бы произойти значительные пластические макродеформации, чего на самом деле нет. Такие остаточные деформации с утонением стенки трубы проходят на остальном протяжении разрыва в зоне механического дорыва косым срезом, распространяющегося в обе стороны от очага разрушения. Таким образом, четко различаются две зоны — зона зарождения (очага) разрушения и зона разрыва (рис. 97).  [c.222]


Смотреть страницы где упоминается термин Вязкость остаточная : [c.193]    [c.215]    [c.237]    [c.304]    [c.132]    [c.315]    [c.101]    [c.533]    [c.84]    [c.425]    [c.113]    [c.253]   
Свойства газов и жидкостей Издание 3 (1982) -- [ c.371 ]



ПОИСК



В остаточное



© 2025 Mash-xxl.info Реклама на сайте