Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кристаллизация методы

Эвтектическими композиционными материалами называют сплавы эвтектического или близкого к эвтектическому состава, в которых упрочняющей фазой выступают ориентированные кристаллы, образующиеся в процессе направленной кристаллизации. Ориентированная структура в сплавах эвтектического состава получается методами направленной кристаллизации (методы Чохральского, Бриджмена, зонной плавки). В отличие от обычных композиционных материалов, получаемых путем последовательного выполнения нескольких трудоемких технологических операций, эвтектические композиционные материалы получают за одну операцию. Ценно то, что на-  [c.279]


Эвтектическими композиционными материалами называют сплавы эвтектического или близкого к эвтектическому состава, в которых упрочняющей фазой выступают ориентированные кристаллы, образующиеся в процессе направленной кристаллизации. Ориентированная структура в сплавах эвтектического состава получается методами направленной кристаллизации (методы Чохральского, Бриджмена, зонной плавки). В отличие от обычных композиционных материалов, получаемых путем последовательного выполнения нескольких трудоемких технологических операций, эвтектические композиционные материалы получают за одну операцию. Ценно то, что направленная ориентированная структура может быть получена на уже готовых изделиях. Это существенное преимущество эвтектических композиций по сравнению с другими технологиями получения композиционных материалов.  [c.310]

А. Направленная кристаллизация методом литья в оболочковую  [c.110]

А. Направленная кристаллизация методом литья  [c.160]

Ушаков Д. Ф. Направленная кристаллизация — метод получения кислотостойких покрытий с повышенными термическими и механическими свойствами. Автореферат диссертации на соискание ученой степени кандидата технических паук. Л., 1966.  [c.19]

Вакуумно-дуговой переплав хорошо очищает металл от газов и неметаллических включений. Повышение свойств металла достигается благодаря вакуумной обработке металла и вследствие направленной снизу вверх последовательной кристаллизации. Методом ВДП можно выплавлять слитки большой массы. В настоящее время освоена выплавка слитков до 60 т. Проектируются установки для выплавки слитков массой 100—200 т.  [c.35]

В основе всех методов выращивания монокристаллов из расплава лежит направленная кристаллизация расплава, при которой зарождение и рост кристалла при наличии переохлаждения АТ в расплаве осуществляются на одной фазовой границе, а теплота от фронта кристаллизации отводится преимущественно в одном направлении. Это позволяет кристаллизовать расплав в виде одного монокристалла. Методы направленной кристаллизации подразделяются на три группы методы нормальной направленной кристаллизации] методы вытягивания из расплава методы зонной плавки.  [c.222]

К числу важных преимуществ кристаллизации методом вертикальной зонной плавки относится возможность выращивания кристаллов без использования тиглей. В этом случае не происходит загрязнения расплава за счет растворения в нем материала тигля, а в выращиваемом кристалле не возникают дефекты вследствие различия коэффициентов линейного расщирения кристалла и материала тигля. Метод вертикальной зонной плавки щироко применяется при выращивании особо чистых монокристаллов полупроводников, а также материалов с высокой температурой плавления, обладающих в расплавленном состоянии высокой реакционной способностью, а также однородно легированных полупроводниковых материалов.  [c.233]


Выращивание кристаллов из растворов можно производить как без специальных затравок, путем спонтанного образования и роста центров кристаллизации, так и контролируемым ростом на затравке. Практически выращивание крупных монокристаллов производят на затравках методами, аналогичными кристаллизации из собственных расплавов методами нормальной направленной кристаллизации, методами вытягивания из раствора и методами зонной плавки. Однако технологическая аппаратура при выращивании кристаллов из растворов усложняется устройствами для обеспечения равномерной подачи исходных материалов в зону кристаллизации, то есть устройствами для обеспечения поддержания жидкой фазы в состоянии пересыщенного раствора.  [c.237]

Влияние метода выплавки и разливки. При изготовлении жаропрочных сплавов широкое распространение получили специальные методы выплавки в вакууме, в защитной атмосфере с применением электрошлакового и вакуумного дугового переплава, с использованием различных раскислителей, малых добавок, в том числе редкоземельных элементов. Для деталей, изготовляемых методами точного литья, существенное значение имеет способ заливки и кристаллизации. Методы выплавки и заливки влияют на свойства металла как до, так и после горячей обработки (ковки, прокатки, термической обработки). Установлено, что методы выплавки и разливки влияют на содержание в металле газов, различных оксидов в виде плен, неметаллических включений, вредных примесей, обычно химически неопределяемых (Аз, РЬ, В1), а также на размеры включений, их распределение внутри зерна и пористость. Вакуумный переплав оказывает влияние на анизотропию свойств, количество и характер распределения неметаллических включений, прокаливаемость, переходную температуру хрупкости и особенно на ликвационную неоднородность металла.  [c.234]

Для металлов, имеющих сильную склонность к переохлаждению до спонтанного образования центров затвердевания, таких, как галлий, олово, сурьма, описанного выше охлаждения гнезда термометра недостаточно. Получающееся при этом падение температуры стенки гнезда термометра не приводит к возбуждению кристаллизации, поскольку эти металлы могут оставаться в переохлажденном жидком состоянии в случае сурьмы примерно на 40 К ниже равновесной температуры затвердевания. Интенсивное охлаждение наружной стенки тигля потоком аргона или азота [21] позволяет преодолеть эти особенности металлов. В этом случае тигель, но не сколь-нибудь значительный участок печи, должен быть быстро охлажден на несколько десятков градусов. Этого достаточно для возникновения центров кристаллизации по всей внутренней стенке тигля. Выделяющейся теплоты перехода достаточно для повышения температуры образца и тигля до температуры затвердевания в течение нескольких минут. Достижение плато затвердевания образца происходит в результате быстрого роста дендритов, что всегда наблюдается при затвердевании из переохлажденного состояния. Затем рост дендритов прекращается и оставшийся металл затвердевает с гладкой поверхностью раздела фаз, медленно продвигающейся к гнезду термометра. Альтернативный метод [55] возбуждения центров кристаллизации таких металлов, как олово и сурьма, состоит в удалении тигля с образцом из печи при достижении в ней температуры затвердевания и помещении его в другую печь, имеющую температуру примерно на 90 °С ниже. Как только из-за выделяющегося при начале затвердевания тепла прекратится охлаждение тигля с образцом, он переносится в исходную печь, имеющую температуру лишь на несколько градусов ниже температуры затвердевания. Успех подобной процедуры ярко демонстрирует выделение энергии при переходе от жидкого состояния к твердому.  [c.177]

Оба метода обеспечивают достаточное охлаждение тигля для образования центров кристаллизации без охлаждения всей печи много ниже температуры затвердевания. В противном случае тепла, выделяющегося при затвердевании, было бы недостаточно для подъема температуры устройства до точки перехода. Если естественное образование зародышей происходит спонтанно, плато затвердевания резко укорачивается, иногда до полного исчезновения.  [c.177]


Значение пластичности П и характер ее изменения в т.и.х. зависят от химического состава сплава, схемы кристаллизации сварного шва, развития химической и физической неоднородности и других факторов, значение и степень влияния которых существенно зависят от методов, приемов сварки, применяемых режимов и т. д.  [c.479]

В отливках при кристаллизации путем очень медленного отвода тепла, а также с помощью других специальных способов (плазменно-дуговой метод или направленная кристаллизация слитков и отливок и др.) может быть получен кусок металла, представляющий собой один кристалл, так называемый монокристалл.  [c.24]

Для определения жидкотекучести чугуна применяют метод, основанный на прекращении течения жидкого чугуна в канале постоянного сечения вследствие охлаждения и кристаллизации чугуна.  [c.102]

Внедрение на моторостроительных предприятиях производства литья лопаток с направленной кристаллизацией началось в 1970 г., для чего была введена в строй первая проходная печь ПМП-1 (ОКБ-1239). Принцип действия заключается в том, что передвижение оболочковой формы с огнеупорным накопителем производится горизонтально по тепловому потоку печи. При этом керамические формы находятся в идентичных условиях нагрева, плавления металла и заливки по потоку и направленного охлаждения. Схема получения лопаток методом направленной кристаллизации в печи ПМП-2 показана на рис. 210.  [c.422]

Диаграммы состояния наглядны, из них хорошо видно различие в составах равновесных сосуществующих фаз, и поэтому они широко применяются при анализе возможности разделения растворов при помощи сублимации, кристаллизации или. дистилляции. Среди перечисленных методов дистилляция изучена наиболее полно, так как она известна свыше трех тысяч лет и, естественно, является одним из основных процессов, применяемых при разделении веществ в лабораторных и промышленных условиях. Поэтому ей следует отдать предпочтение и в первую очередь рассмотреть жидкие системы, находящиеся в равновесии с паром  [c.71]

Рассмотрим физико-химические процессы, обусловленные термической диссоциацией исходного вещества, его химическим взаимодействием с материалом контейнера и атмосферой кристаллизации. Без учета этих процессов невозможно определить температурно-временной режим кристаллизации, а следовательно, оптимальные условия и метод выращивания монокристаллов.  [c.52]

Взаимодействие расплава с материалом контейнера является решающим фактором при выборе тигельного метода кристаллизации. Основным условием при этом является отсутствие их взаимной растворимости и химического взаимодействия. Однако этого недостаточно, так как реакция взаимодействия расплава с материалом контейнера может проходить с участием третьего реагента, например кислорода (влаги), имеющегося в атмосфере зоны кристаллизации, исходной шихте или адсорбированного на стенках кристаллизационной камеры, рабочих элементах печи и контейнера.  [c.53]

Монокристаллы изготовляют тремя методами направленной кристаллизацией, из растворов, методом газовой фазы.  [c.285]

Метод направленной кристаллизации. Полупроводниковый материал (обычно монокристалл) наиболее часто очищают способом зонной плавки. Схема зонной плавки приведена на рис. 180. Слиток из полупроводника, помещенный в трубчатую печь, нагревается на участке I до температуры плавления, а затем протягивается через печь слева направо. В образующуюся расплавленную зону попадает из слитка часть примеси. К концу протягивания (производят несколько раз) в основном все примеси остаются в конце слитка, который затем удаляют. Распределение примесей по длине образца приведено на рис. 180, б. Распределение концентрации примесей оценивается равновесным коэффициентом распределения Ко, он равен отношению концентрации примеси в твердой фазе s к концентрации примеси в контактирующей жид-  [c.285]

Усадочные раковины и рыхлоты образуются в отливке из-за некомпенсированной усадки в процессе кристаллизации. Она может возникнуть при неправильном распределении массы металла по сечению отливки. Для того чтобы избежать этого дефекта, производят проверку конструкции стенки методом вписанных окружностей (рис. 4.14). Суть его заключается в том, что по мере приближения фронта кристаллизации к прибыли диаметр окружности, вписанной в сечение отливки, должен увеличиваться. Иными словами, любая вписанная окружность должна беспрепятственно выкатываться В направлении прибыли.  [c.74]

Аморфные магнитные материалы. В последнее время уделяется большое внимание вопросам получения и применения аморфных магнитных материалов (АММ). Такие материалы получаются при быстром охлаждении из расплавленного состояния без кристаллизации. Быстрое охлаждение расплавленного сплава достигается различными технологическими приемами, среди которых есть непрерывные или полунепрерывные методы. Аморфная структура получается при скорости охлаждения расплава до 10 °С/с. Современными методами можно изготовить из аморфного материала проволоку или ленту различного профиля непосредственно из расплава со скоростью до 1800 м/мин. АММ обладает очень высокими магнитными характеристиками наряду с повышенным сопротивлением. Перспективными высокопроницаемыми материалами являются аморфные сплавы железа и никеля с добавками хрома, молибдена, бора, кремния, фосфора, углерода или алюминия с магнитной проницаемостью до 500, коэрцитивной силой Не около 1 А/м и индукцией насыщения В., от 0,6 до 1,2 Тл.  [c.99]

Структура турбинных лопаток, полученная методом направленной кристаллизации. Методы регулирования теплсютвода разнообразны. Наиболее простая схема теплоотвода формы показана на рис. 80. Отвод тепла, обеспечивающий кристаллизацию, осуществляет медный поддон, охлаждаемый водой. При этом обеспечивается строгая направленность затвердевания снизу вверх отливки в нижней части формы и нагрева се верхней части индуктор<зм.  [c.420]

Метод горизонтально направленной кристаллизации — метод Багдасарова (рис. 26) — заключается в следующем. В контейнер 4, имеющий форму лодочки, помещают исходное вещество — шихту 3 в виде порошка, кристаллического боя или керамических таблеток. Перемещая контейнер через зону нагрева, создаваемую нагревателем 5, шихту расплавляют и за-кристаллизовывают. Для получения строго ориентированных монокристаллов в вершину лодочки устанавливают затравку и наблюдают как за моментом затравления, так и за формой фронта кристаллизации в процессе выращивания монокристалла. Так как при этом методе высота расплава много меньше среднего радиуса его поверхности, возникают условия эффективного удаления неконтролируемых примесей испарением. Открытая поверхность расплава позволяет вводить активирующую при.месь на любом этапе выращивания монокристалла.  [c.56]


В двух следующих частях изложены технологические основы переработки жидкого и твердого минерального сырья. Указанное деление было обусловлено особенностями добычи и переработки галургического сырья. Обогащение (концентрирование) жидйого сырья обычно проводят в природных условиях (в бассейнах или на соляных озерах), садка и обезвоживание солей — на открытых больпшх площадях, сбор солей — с применением особой техники (солесосов, разрыхляющих и сборочных машин). Добыча твердого ископаемого сырья связана с горной техникой. Переработка этого сырья обычно осуществляется в заводских условиях. Сюда относятся процессы дробления руды, а также механические (гравитационные, флотационные) и химические (через растворение и кристаллизацию) методы обогащения руды. Только на последних этапах способы переработки маточных рассолов в обоих случаях сближаются.  [c.9]

Берберова с сотрудниками [1 ] исследовали диаграмму плавкости (поверхность кристаллизации) методом каплепадения (бестигельная плавка), описанным Шолохович с сотрудниками [2]. За температуру плавления они принимают температуру отрыва капли расплава от образца.  [c.432]

С точки зрения процесса кристаллизации метод тигельной зонной плавки мало чем отличается от метода нормальной направленной кристаллизации со всеми его недостатками (наличие стенок тигля и свободной поверхности, что не позволяет обеспечить полную симметризацию теплового режима). Однако есть и преимущества. Преимуществом метода тигельной зонной плавки по сравнению с методом нормальной направленной кристаллизации является то, что время, в течение которого расплав находится в контакте с материалом тигля, в этом случае меньще, а поэтому и загрязнение материала менее значительно. Кроме того, используя метод зонной плавки, можно регулировать щирину расплавленной зоны, создавать вдоль слитка несколько отдельных расплавленных зон, а также применять монокристаллическую затравку.  [c.232]

Образование и исчезновение дислокаций. Обычно Д. возникают при образовании кристалла из расплава или из газообразной фазы (см. Кристаллизация). Методы выращивания бездислокац. монокристаллов очень сложны и разработаны только для немногих в-в. После тщательного отжига кристаллы содержат обычно 10 —10 Д. на 1 м . Притягивающиеся Д. с противоположными векторами Бюргерса, лежащие в одной плоскости скольжения, при сближении уничтожают друг друга (аннигилируют, рис. 5, б, в, г). Если такие Д. лежат в разных плоскостях скольжения, то для их аннигиляции требуется переползание. Поэтому при высокотемпературном отжиге, способствующем переползанию, плотность Д. понижается. Искривление ат. плоскостей вблизи Д. изменяет сечение рассеяния рентг. лучей и эл-нов. На этом основаны рентг. и электронно-микроскопич. методы наблюдения Д. (рис. 8).  [c.165]

Р.И. Минц и др. [10J использовали этот метод для анализа фрактальных структур при кристаллизации жидкости на подложке. Определенная указанным методом фрактальная размерность для различных систем укладывалась в интервале 1 < D i 2. Обнаружен скачок D при К=Ккр, причем он был тем резче, чем больше R p. Отмечено, что критический размер фрактала отвечает про-  [c.87]

Также методом малоуглового рассеивания рентгеновских лучей (установка КРМ-1, излучение СиК , отфильтрованное никелевым фильтром, напряжение 30 мВ, ток 16 мА, экспозиция 400 с в каждой точке отсчета) определяли минимальный размер устойчивых частиц, выделенных из анализируемых сталей. Их размер связали с устойчивым зародышем кристаллизации на фуллерене (R< ).  [c.223]

В дшшой роботе рассмотрены упругие и пластические эффекта, сопровождающие основной структурный переход при стобилизирующей обработке с упорядочением — сдвиговой (бездиффузионной) направленной кристаллизацией аморфных магнитно-мягких металлических сплавов типа переходный металл — металлоид преимущественно на основе железа и никеля, подученных методом спиннингования.  [c.70]

При мотсматическом моделировании движения жидкого металла В ближний аоне воздействия использовались нелинейные уравнения вязкой теплопроводной жидкости — уравнения Навье-Стокса. Для их численного решения использовался метод Маккормака, хорошо зарекомендовавший себя при решении данного типа задач. Расчеты показали, что под действием внешнего импульсного воздействия в расплаве возникают два типа движения среды регулярные акустические течения, охватывающие достаточно большие области пространства, и турбулентные течения непосредстноньо на фронте кристаллизации, имеющие характер многочисленных мелкомасштабных вихрей.  [c.82]

Разработанные модели массопереноса для плоских слоев покрытий используют феноменологический аппарат диффузии, позволяющий моделировать кинетические закономерности массопереноса на движущихся межфазных границах, начиная со стадии смвчиванпя (граничная кинетика растворения) и до полного исчезновения расплава ив зазора (изотермическая кристаллизация), включая кинетические особенности контактного плавления. В моделях применен метод интегрального решения уравнений диффузии для твердой и жидкой фаз при соответствующих начальных, граничных условиях и условии мао-собаланса на движущихся границах в полиномиальном приближении. Расхождение аналитических расчетов с численным моделированием не превышает 1—2%, а с экспериментом б—10%.  [c.187]

Следует отметить, что наиболее эффективным и гибким методом регулирования скорости теплоотвода при кристаллизации жидких расплавов являются водоохлаждаемые медные кристаллизаторы, которые впервые с 1944 г. начали осваиваться для непрерывной разливки литья стальных слитков в черной металлурпш.  [c.425]

Тепломассообмен в многокомпонентных системах относится к наиболее важным проблемам в расчетах тепломассообмена и широко применяется в процессах ректификации, хеморектификации, абсорбции, хемосорбции, адсорбции, сушки, экстракции, кристаллизации, в мембранных процессах и т.д. Несмотря на важность изучения этого типа тепломассопереноса, теории и методам его расчета посвящено сравнительно небольшое число исследований, особенно если данный процесс проходит в движущейся среде. Основная причина состоит в том, что массоперенос в многокомпонентных смесях представляет собой сложную математическую задачу. Она отличается от задач, рассмотренных в первых двух главах еще и тем, что при ее решении необходимо пользоваться матричными уравнениями в частных производных, описывающих процессы тепломассопереноса в движущей среде. Развитый метод решения этих задач, описанной в другой монографии, применен в гл. 3 к расчету массообмена в химически реагирующей ламинарной многокомпонентной струе жидкости.  [c.8]

Рис. 29.14. Угловые зависимости резонансного поля (а) и ширины резонансной кривой (б) сферы из d r2Se4 [76] Т = 4.2 К 6 — угол между линиями постоянного магнитного поля и осью [1001 I — кристалл, выращенный методом кристаллизации из квазноднородиого расплава 2 — кристалл, выращенный методом переноса в жидкой фазе 3 — кристалл, выращенный методом кристаллизации из квазиоднородного расплава, с молярной ири.месыо Ag 0.08% Рис. 29.14. Угловые зависимости резонансного поля (а) и <a href="/info/201409">ширины резонансной кривой</a> (б) сферы из d r2Se4 [76] Т = 4.2 К 6 — угол между линиями <a href="/info/18968">постоянного магнитного</a> поля и осью [1001 I — кристалл, выращенный методом кристаллизации из квазноднородиого расплава 2 — кристалл, выращенный методом переноса в <a href="/info/236464">жидкой фазе</a> 3 — кристалл, выращенный методом кристаллизации из квазиоднородного расплава, с молярной ири.месыо Ag 0.08%
Выбор метода получения аморфных материалов определяется спецификой аморфизируемого вещества. Так, расплавленные Ge и Si обладают металлическими свойствами, и поэтому для получения аморфных полупроводников Ge и Si используют первую группу методов [59]. Для аморфизации Те и особенно Se вполне достаточно быстрого охлаждения в обычных закалочных средах. Аморфизация металлических сплавов требует скоростей до 1 с [60, 61]. Аморфные твердые тела, полученные сверхбыстрой закалкой из жидкого состояния, метастабильны. Они, как считается, обладают большей стойкостью к кристаллизации, чем аморфные вещества, полученные напылением.  [c.274]


Метод Вернейля является бестигельным и позволяет выращивать монокристаллы больших размеров по диаметру и по длине, а также проводить кристаллизацию в окислительной атмосфере при высоких температурах. Однако качество получаемых кристаллов вследствие недостаточно равномерной подачи порошка, непостоянства температуры пламени и трудности ее стабилизации невысоко. Кроме того, при выращивании монокристаллов часть исходного порошка проходит мимо затравки, что весьма нежелательно при использовании дорогостоящих материалов.  [c.54]

Этим методом можно многократно перекристаллизовывать вещества. Кроме того, он позволяет выращивать монокристаллы заданных геометрических форм и непрерывно проводить процесс, перемещая серии контейнеров через зону кристаллизации, что создает предпосылки для автоматизации. Метод позволяет создавать достаточно равномерное температурное поле, обеспечивая выращивание ненапряженных монокристаллов, например сапфира, таких больтиих размеров, которые другими методами получить невозможно.  [c.56]

Модификация структуры основывается на влиянии изменений параметров микроструктуры (размер зерна, кристаллографическая текстура, плотность дислокаций) на механические свойства и износостойкость материалов. Примерами структурной модификации приповерхностного слоя являются дробеструйная обработка, накатывание роликом, вибрационное накатывание, ультразвуковая упрочняющая обработка, алмазное выглаживание, электромеханическое упрочнение 13]. Известно, ч го поверхностная закалка после нагрева приводит к уменьшению размера зерен вблизи поверхности и увеличению локального напряжения течения. Поэтому поверхностный нагрев с применением направленных источников энергии, таких, как лазер и электронный луч, может использоваться для оплавления и последующего быстрого затвердевания (кристаллизации) поверхностного слоя. Названные мегоды обработки вызывают yny4nJ HHe размеров зерна, формирование мелкой, субзеренной структуры, увеличивают концентрацию выделений и упрочнение, приводят к появлению новых полезных фаз. растворению или удалению инородных включений [19]. Перечисленные эффекты структурной модификации делают ее весьма перспективной, а развитие метода входит в число актуальных задач гриботехнологии.  [c.39]


Смотреть страницы где упоминается термин Кристаллизация методы : [c.284]    [c.320]    [c.95]    [c.221]    [c.98]    [c.130]    [c.34]    [c.183]    [c.179]   
Физические основы ультразвуковой технологии (1970) -- [ c.486 ]



ПОИСК



659, 661, 662 — Классификация 660, 661 Методы очистки 662 — Образование в расплаве дополнительных центров кристаллизации 659 — Устройства для введени

И МЕТОДЫ ЕГО ИЗМЕРЕНИЯ Гаврилов КРИСТАЛЛИЗАЦИЯ МЕТАЛЛОВ

Классификация и анализ методов определения технологической прочности металлов в процессе кристаллизации при сварке

Кристаллизация

Литье в песчаные формы методом последовательно направленной кристаллизаци

Литье в песчаные формы методом последовательно направленной кристаллизаци давлением

Методы нормальной направленной кристаллизации

Методы очистки нормальная направленная кристаллизация

Определение температур кристаллизации металлов и сплавов и построение диаграммы состояния термическим методом

Пигальская Л. А. К расчету температурных полей в оптических монокристаллах при выращивании их методом направленной кристаллизации

Получение отливок методом направленной кристаллизации

Применение математико-статистических методов для исследования процесса кристаллизации под механическим давлением



© 2025 Mash-xxl.info Реклама на сайте