Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Показатель преломления звуковых волн

Показатель преломления звуковых волн 46, 52  [c.205]

Закон преломления звуковых волн при переходе их из одной среды в другую, аналогичен закону преломления световых волн он может быть выражен через показатель преломления п, который равен отношению  [c.81]

ДИСПЕРСИЯ [волн — зависимость фазовой скорости гармонических волн от их частоты звука — зависимость фазовой скорости гармонических звуковых волн от их частоты линейная спектрального прибора — характеристика спектрального прибора, определяемая производной от расстояния между спектральными линиями по длине света оптического вращения — зависимость оптической активности вещества от длины волны проходящего через него линейно поляризованного света пространственная — зависимость тензора диэлектрической проницаемости среды от волнового вектора, приводящая, например, к вращению плоскости поляризации света — зависимость абсолютного показателя преломления вещества от частоты света]  [c.229]


В приёмниках на основе фазовой модуляции света приём звука осуществляется с помощью интерферометрия. схем (Маха — Цендера, Майкельсона, Фабри — Перо и др.) благодаря интерференции световых волн, по-разному промодулированных звуком. Изменение фазы световой олны Дф происходит в результате изменения эфф. показателя преломления Пдф и длины световода L под действием звукового давления р  [c.461]

Рассмотрим теперь распространение плоской монохроматической световой волны в среде, в которой возбуждена звуковая волна и показатель преломления является периодически промодулированным. Как было показано в разд. 9.1 на конкретных примерах, звуковая волна вызывает изменение показателя преломления среды. При этом среда становится периодической с периодом, равным длине звуковой волны. Это периодическое возмущение изменяется как в пространстве, так и во времени. Если звук представляет собой бегущую волну, то периодическое возмущение перемещается со скоростью звука (ее типичное значение порядка нескольких тысяч метров в секунду). Поскольку скорость звука на пять порядков меньше скорости света (с = 3 - 10 м/с), периодическое возмущение, вызванное звуковой волной, можно считать стационарным. Задача при этом сводится к задаче о распространении электромагнитного излучения в периодической среде, рассмотренной нами в гл. 6. Для иллюстрации акустооптического взаимодействия рассмотрим в качестве примера распространение светового пучка в воде. Благодаря фотоупругому эффекту звуковая волна приводит к изменению показателя преломления. Пусть ось г совпадает с направлением распространения звуковой волны, а плоскость yz параллельна плоскости падения. Если световой пучок линейно поляризован в направлении х (ТЕ-мода), то, как мы показали в разд. 9.1.1 на конкретном примере, показатель преломления для этой моды записывается в виде  [c.354]

Это выражение в точности совпадает с коэффициентом отражения брэгговского отражателя [см. (6.6.10)]. Характеристики акустического взаимодействия с противоположно направленными волнами аналогичны характеристикам брэгговского отражателя, за исключением того, что модуляция показателя преломления, создаваемая звуковой волной, перемещается в пространстве. Поскольку скорость звука пренебрежимо мала по сравнению со скоростью света, периодическое возмущение, вызванное звуковой волной, является, по существу, стационарным. Следовательно, все результаты, полученные в разд. 6.6 для брэгговских отражателей, можно использовать для описания акустооптического взаимодействия противоположно направленных волн.  [c.379]


Если вещество представляет собой фотоупругую среду, то поле напряжений, индуцированное поверхностной акустической волной, приводит к периодическому изменению показателя преломления. Это периодическое изменение диэлектрической проницаемости действует как поверхностная решетка и также приводит к дифракции света. Однако в этом случае эффективная длина взаимодействия оказывается порядка длины звуковой волны Л и наблюдаемые эффекты малы [5, 6] по сравнению с эффектами, возникающими при волнообразном возмущении поверхности.  [c.384]

Другим видом электрооптической тонкопленочной модуляции является использование двумерной брэгговской дифракции волноводной моды на пространственной периодической модуляции показателя преломления. Периодическое изменение показателя преломления можно получить с помощью периодического электрического поля, создаваемого гребенчатой электродной структурой, показанной на рис. 11.19. Этот случай формально аналогичен случаю брэгговского рассеяния на звуковой волне (см. гл. 9), когда модуляция показателя преломления была обусловлена акустической деформацией.  [c.492]

Механизм действия бриллюэновского зеркала можно интерпретировать следующим образом. В данном случае в кювете регистрируется безопорная трехмерная голограмма типа рассмотренной на рис. 9. Отличие заключается лишь в характере реакции светочувствительной среды в случае обычной голографической записи показатель преломления светочувствительной среды изменяется пропорционально интенсивности воздействующего излучения. В соответствии с этим световые сгустки , образовавшиеся в результате интерференции падающего на голограмму излучения, регистрируются средой в виде соответствующих равномерно заполненных сгустков показателя преломления. В случае же бриллюэновского зеркала благодаря специфическим свойствам среды в местах расположения световых сгустков развивается процесс вынужденного рассеяния света на звуке, в результате чего каждый световой сгусток заполняется звуковой волной, распространяющейся в том же направлении, что и излучение, падающее на кювету. Гребни звуковой волны, следующие друг за другом на расстоянии Л, сильно отражают в обратном направлении падающий на них свет, анало-  [c.720]

Изменение характера отклика светочувствительной среды, естественно, приводит к изменению результата взаимодействия восстанавливающего излучения со структурой голограммы. Если на равномерно заполненных сгустках показателя преломления излучение только преломлялось и поэтому восстановленная волна распространялась в том же направлении, что и падающая, то в случае бриллюэновского зеркала те же сгустки, модулированные поперечными звуковыми волнами, сильно отражают свет в обратном направлении. Изменению направления волны на противоположное при неизменной общей конфигурации картины ее интерференции (конфигурация сгустков в обоих случаях одинакова, изменяется только их наполнение) соответствует переход к сопряженной волне.  [c.721]

В общем случае свет, распространяющийся в среде, в которой присутствует ультразвуковая волна, испытывает дифракцию. Это обусловлено возникновением в звуковой волне упругих деформаций среды, приводящих к периодическому изменению ее показателя преломления п. Образующаяся структура эквивалентна дифракционной решетке с периодом, равным длине волны звука Л. Управляемое изменение амплитуды или частоты (длины) волны ультразвука соответственно изменяет характер процесса дифракции света на ультразвуке, создавая возможность управления амплитудой, фазой и направлением пучка света, проходящего через среду, в которой распространяется ультразвук. В зависимости от соотношения между длинами волн света X, звука Л и длиной их взаимодействия L различают два типа дифракции Рамана—Ната  [c.221]

В данном случае показатель преломления характеризует неоднородность среды для звуковых волн.  [c.80]

Полагая, что звуковая волна частоты Q распространяется вдоль оси у, представим показатель преломления среды в виде  [c.330]

Рассмотрим сначала наиболее простой случай распространения звука в среде с флуктуациями показателя преломления в приближении геометрической акустики [7]. Это приближение справедливо по крайней мере при выполнении двух условий. Первое состоит в том, что масштабы неоднородностей I должны быть значительно больше длины звуковой волны О втором условии будет сказано ниже.  [c.171]


Волноводная картина возникает и тогда, когда ге (г) меняется симметричным образом (рис. 7.8). Такой случай помимо перечисленных выше наблюдается при распространении звуковых волн в океане, а так же оптических волн в диэлектрических волноводах (стекловолокнах). Пусть показатель преломления меняется по закону  [c.230]

Периодич. изменение показателя преломления световых волн, связанное изменением плотности в УЗ-вой волне, вызывает дифракцию света на ультразвуке, наблюдаемую на частотах УЗ мегагерцевого — гигагерцевого диапазона. УЗ-вую волну при этом можно рассматривать как дифракционную решётку, 5кериод к-рой определяется длиной звуковой волны.  [c.11]

ИНТЕРФЕРОМЕТР — прибор, основанный на явлении интерференции волн. В соответствии с природой волн существуют интерферометры акустические для звуковых волн и И. для ол.-магн. воли. К последним относятся онтич. И. и радиоинтерферометр. В данной статье расс.матриваются оптич. И., к-рые получили наиб, распространение как приборы для измерения длин волн спектральных линий и их структуры для из.мере-ния показателей преломления прозрачных сред в метрологии для абс. и относит, измерений длин и перемещений тел, измерения угл. размеров звёзд (см. Интерферометр звкздпъьй) для коитроля формы, микрорельефа и деформации поверхностей оитич. деталей и чистоты мета ллич. поверхностей и пр.  [c.170]

ОПТОВОЛОКОННЫЕ ПРИЕМНИКИ ЗВУКА — приёмники, действие к-рых основано на изменении параметров световода (показателя преломления, длины, формы и т. п.) под действием звуковой волны и возникающей в результате этого модуляции характеристик световой волны (фазы, поляризации, амплитуды), распространяющейся в световоде. В состав О. п. з. входят источник света (лазер, светодиод), чувствит. элемент— световод и фотоприёмник, регистрирующий изменения мощности света на выходе световода, либо оптич. сис-  [c.460]

Приём и обнаружение ультразвука. Вследствие обратимости электрич. и пьезоэлектрич. эффектов эти преобразователи используются и для приёма У. Для изучения У 3-поля можно пользоваться и оптич. методами У., распространяясь в к.-л. среде, вызывает изменение её оптич. показателя преломления, что позволяет визуализировать звуковое поле, если среда прозрачна для света. Совокупность уплотнений и разрежений, сопровождающая распространение УЗ-волны, представляет собой своеобразную регыётку, дифракцию световых волн на к-рой можно наблюдать  [c.216]

Акустооптика изучает взаимодействие оптических волн с акустическими в различных веществах. Возможность такого взаимодействия впервые предсказал Бриллюэн в 1922 г., а затем ее экспериментально проверили в 1932 г. Дебай и Сиарс в США и Люка и Бигар во Франции. При взаимодействии света со звуковыми волнами наиболее интересное явление представляет собой дифракция света на акустических возмущениях среды. При распространении звука в среде возникает соответствующее поле напряжений. Эти напряжения приводят к изменению показателя преломления. Такое явление называется фотоупругим эффектом. Поле напряжений для плоской акустической волны является периодической функцией координат. Поскольку показатель преломления среды претерпевает периодическое возмущение, возникает явление брэгговской связи, как показано в гл. 6. Акустооптическое взаимодействие является удобным способом анализа звуковых полей в твердых телах и управления лазерным излучением. Модуляция света при акустооптическом взаимодействии находит многочисленные применения, в том числе в модуляторах света, дефлекторах, устройствах обработки сигналов, перестраиваемых фильтрах и анализаторах спектра. Некоторые из этих устройств мы рассмотрим в следующей главе.  [c.343]

РИС. 9.1. Звуковая волна, замороженная в некоторый момент времени. Она состоит из чередующихся областей сжатия (темные области) и разряжения (светлые области), KOTOpbie распространяются со скоростью звука V. Показано также мгновенное изменение показателя преломления в пространстве под действием звуковой волны.  [c.355]

В анизотропной же среде показатель преломления для данного светового пучка в общем случае зависит от направления его распространения. Поскольку направление распространения дифрагированного пучка, вообще говоря, отличается от направления исходного пучка, величины волновых векторов теперь не остаются почти неизменными. В некоторых случаях может даже происходить изменение состояния поляризации между падающим и дифрагированным пучками. Пусть п п п — показатели преломления, отвечающие дифрагированному и падающему пучкам соответственно. Стороны треугольника, образованного векторами к, к и К, равны п ш /с, пш/с и К соответственно. Поскольку в общем случае п и не равны друг другу, треугольник не является равнобедренным, даже если пренебречь небольщим различием между ш и со. Пусть в я в — углы между световыми пучками и волновым фронтом звуковой волны (рис. 9.4). Условие брэгговской дифракции получается из треугольника на рис. 9.4 и записывается в виде  [c.359]

До сих пор мы ограничивались рассмотрением взаимодействия светв с объемной звуковой волной в материальных средах, В фото-упругой среде объемная звуковая волна приводит к образованию объемной фазовой решетки. Вследствие периодической модуляции показателя преломления свет испытывает в такой среде дифракцию. Поверхностные акустические волны (волны Рэлея) распространяются в свободном пространстве вблизи полубесконечной среды, причем их акустическая энергия концентрируется в приповерхностном слое толщиной порядка длины звуковой волны. Под действием поверхностной акустической волны оптические свойства вещества также изменяются. В 1967 г. появилось первое сообщение Иппена [6] об экспериментальном наблюдении дифракции света на рэлеевских волнах в кварце. Такая дифракция света может возникать вследствие двух различных причин  [c.384]


Выше при определении параметров акустооптических дефлекторов мы предполагали, что среда является изотропной. Используя дву-лучепреломляющие среды, можно существенно увеличить полосу, а значит, и число разрешимых элементов дефлектора. Рассмотрим изображенную на рис. 10.7 диаграмму акустооптического взаимодействия, в которой плоскость рассеяния (т. е. плоскость векторов кик ) перпендикулярна с-оси одноосного кристалла. Акустический пучок падает таким образом, что для центральной рабочей частоты /q волновой вектор к дифрагированной волны перпендикулярен звуковому волновому вектору Kq. Как мы показали в гл. 9 и в предыдущем разделе, условие Брэгга может выполняться в широком диапазоне частот без использования сильно расходящихся (или управляемых) акустических пучков. Из рис. 9.6 видно, что для широкого диапазона акустических частот угол падения остается почти постоянным, в то время как угол дифракции сильно изменяется. Поскольку в широком диапазоне частот звуковой волновой вектор приблизительно перпендикулярен дифрагированному пучку, падающий световой пучок должен отвечать моде с более высоким значением показателя преломления. В отрицательных одноосных кри-  [c.414]

Недавно была продемонстрирована [II] возможность брэгговского взаимодействия между поверхностными акустическими волнами и оптическими направляемыми волнами (см. гл. II) в тонкопленочных диэлектрических волноводах. Поскольку эффективность дифракции Г] [см (IO.I.II)] зависит от интенсивности звука локализация акустической энергии вблизи поверхности (на глубине Л) приводит к низкой мощности модуляции или переключения. На рис. 10.9 схематически изображена экспериментальная установка, в которой как поверхностная звуковая волна, так и оптическая волна направляются в одном кристалле LiNbOj. Диэлектрический волновод образуется вследствие диффузии Li из поверхностного слоя порядка 10 мкм, что приводит к увеличению показателя преломления в этой области. На рис. 10.10 представлена фотография пятен отклоненных световых пучков, когда частота звука в дефлекторе изменялась  [c.418]

Процесс ВРМБ можно описать классически как параметрическое взаимодействие между волнами накачки, стоксовой и акустической. Благодаря электрострикции накачка генерирует акустическую волну, приводящую к периодической модуляции показателя преломления. Индуцированная решетка показателя преломления рассеивает излучение накачки в результате брэгговской дифракции. Поскольку решетка движется со звуковой скоростью частота рассеянного излучения испытывает доплеровский сдвиг в длинноволновую область. В квантовой механике такое рассеяние описывается как уничтожение фотона накачки и одновременное появление стоксова фотона и акустического фонона. Из законов сохранения энергии и импульса при рассеянии вытекают соотношения для частот и волновых векторов трех волн  [c.258]

Вид функции Ф (а) будет определяться конкретной системой фокусирования. Так, для радиально поляризованного излучателя из пьезоэлектрической керамики Ф (а) = 1. Для всех других типов фокусируюш их систем Ф (а) не есть постоянная величина. На рис. 7 показан ход лучей через выпуклую собирающую звуковую линзу, показатель преломления которой больше единицы, для простоты рассуждений входная ее поверхность принята плоской. Справа пунктиром показан образованный этой линзой сходящийся к фокусу сферический фронт. Энергия, заключенная в любом кольце шириной Ау, попадет внутрь полого конуса толщиной Аа. Отношение интенсивностей будет, таким образом, пропорционально отношению отрезков Ау и 2—2, а отношение давлений — корню квадратному из этой величины. Не входя в детали расчета, приведенного в работе [И], из рисунка можно заключить, что при углах, близких к нулю, размеры отрезков А]/ и 2—2 почти совпадают. По мере увеличения угла а отрезок Ау остается неизменным, тогда как отрезок 2—2 уменьшается, и отношение интенсивности в сходящейся волне 1а к интенсивности в падающей плоской волне растет. Расчет дает для функции распределения, в предположении, что прозрачность линзы для всех углов равна единице, следующее выражение [12]  [c.160]

Поверхность конуса возмущений представляет оптическую неоднородность, хотя и слабую по интенсивности, но все же достаточно заметную при исследовании специальными оптическими приборами. Эта оптическая неоднородность (изменение показателя преломления) объясняется изменением плотности воздуха под действием сжатия или раз-Режгния его в звуковой волне. Измеряя углы возмущений, по фотоснимкам обтеканий можно определить соответствующие числа М, зная скорость распространения звука в среде, — и абсолютные скорости потока.  [c.163]

Из только что сказанного понятно одно из наиболее важных применений электрооптики использование изотропных сред в качестве оптических затворов. Классический пример — ячейка Керра. Схема затвора с ячейкой Керра приведена на рис. 79. В отсутствие электрического поля на ячейке (небольшой объем, заполненный нитробензолом) свет от источника к экрану проходит через два скрещенных поляроида в этом случае колебания электрического вектора, пропускаемые одним из них, падают на другой так, что плоскость этих колебаний перпендикулярна той плоскости, в направлении которой второй поляроид пропускает свет. Приложение электрического поля делает нитробензол из изотропного одноосным через него теперь будут распространяться две волны (в соответствии с его двумя показателями преломления в новом состоянии). Поляризация в этих волнах взаимно перпендикулярна, откуда следует, что свет в этОхМ случае может пройти (хотя бы частично) и через второй поляроид и достигнуть экрана. Интересно, что именно на этом принципе были построены одни из первых аппаратов звукового кино—жидкостные (нитробензоловые) затворы, которые применяются редко их заменили кристаллические модуляторы.  [c.189]

На определённой глубиьз в океанах имеются области локального повышения показателя прелоилевяя для звуковых волн. В результате авуковые волны могут распространяться горизонтально в образующихся каналах на большие расстояния. Такой процесс и будет предметом рассмотрения данного раздела. Распространение звуковых волн обычно происходит в условиях, когда и в горизонтальном направлении показатель преломления слабо осциллирует. Иы исследуем динаиику в рамках геометрической оптики лучей, когда характер--ная длина волны мала по сравнению с типичным размером неоднородности среды как в вертикальном, так и в горизонтальном направлениях, что понятие лучей является обоснованным.  [c.80]

Акустооптическая модуляция добротности. В основе действия акустооптического затвора лежит явление дифракции света на ультразвуковой волне. Предположим, что в некоторой среде (твердой или жидкой) распространяется плоская ультразвуковая юлна, возбуждаемая пьезопреобразователем при этом в среде возникают механические напряжения, связанные с локальными сжатиями и разрежениями. Через фотоупругий эффект эти напряжения воздействуют на показатель преломления среды. В результате в среде образуются различающиеся показателем преломления периодические слои (пространственный период равен длине звуковой волны Л), перемещающиеся по среде со скоростью звука. При прохождении световой волны через такую среду будет иметь место дифракция на пространственной периодической структуре, связанной с периодически изменяющимся показателем преломления.  [c.330]


Здесь п — показатель преломления среды в отсутствие ультразвуковой волны, Ап — амплитуда изменения показателя преломления. Величина Ап определяется амплитудой упругой деформации, с которой она связана через упругооптические постоянные среды, в свою очередь, амплитуда упругой деформации зависит от мощности звуковой волны Ра [25].  [c.330]

В современной теории распространения электромагнитных и звуковых волн в атмосфере во многих случаях приходится принимать во внимание турбулентность, вызывающую флуктуадии показателя преломления воздуха.  [c.6]

Таким образом, отклонение показателя преломления звука от единицы складывается из двух членов. Первый из них связан с Згктуацией местной скорости звука, второй — со сносом звуковой волны ветром. С учетом (7) уравнение (6) может быть представлено в виде обычного уравнения эйконала  [c.277]

Задача о слабой границе раздела представляет значительный физический интерес. Например, изменение показателя преломления на фанице вода -морское дно может составлять малые доли процента (57]. Весьма мало отличие значений т и п от единицы на границах водных масс в океане или воздушных масс в атмосфере. Кроме того, в случае непрерывной стратификации отражение сферической волны от переходного слоя между средами с блиэкими значениями сир при довольно общих предположениях сводится к отражению от слабой границы раздела (42]. Впервые возникающие при п -> 1 особенности были отмечены в работе (41]. Когда т -> 1, п -> 1 амплитуда звукового давления во всей среде стремится к 1 /Л, где Л - расстояние от источника. В случае кЯ > 1 геометрическая акустика дает преломленную волну с достаточной точностью, и трудности возникают только при вычислении поправок. Мы остановимся на исследовании отраженной волны.  [c.264]


Смотреть страницы где упоминается термин Показатель преломления звуковых волн : [c.52]    [c.50]    [c.50]    [c.677]    [c.592]    [c.291]    [c.353]    [c.431]    [c.10]    [c.48]    [c.175]    [c.2]    [c.352]    [c.564]    [c.46]    [c.119]   
Акустика неоднородной движущейся среды Изд.2 (1981) -- [ c.46 , c.52 ]



ПОИСК



Волны звуковые

Волны, преломление

Показатель преломления

Преломление

Преломление звуковой волны



© 2025 Mash-xxl.info Реклама на сайте