Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Характеристики модуляции

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ, МОДУЛЯЦИЯ СВЕТОВОГО ИЗЛУЧЕНИЯ И ПЕРЕНОС ИНФОРМАЦИИ ОБ ОБЪЕКТЕ  [c.12]

Рис. 7.66. Характеристики модуляции четырехканальной дискретной пластинки — предыскажения А.=20 lg Рис. 7.66. Характеристики модуляции четырехканальной дискретной пластинки — предыскажения А.=20 lg

Таким образом, в данной модели предполагается, что характеристики модуляции, наложенной на исходный цуг волн, пространственно однородны и поэтому изменяются всюду одновременно. Выделение в явном виде зависимости от времени удобно для упрощения анализа, а обобщение с целью параллельного учета зависимости от х можно легко выполнить после (как это уже рассматривалось в 2).  [c.93]

Перечисленные допущения характерны для функционального моделирования, широко используемого для анализа систем автоматического управления. Элементы (звенья) систем при функциональном моделировании делят на три группы 1) линейные безынерционные звенья для отображения таких функций, как повторение, инвертирование, чистое запаздывание, идеальное усиление, суммирование сигналов 2) нелинейные безынерционные звенья для отображения различных нелинейных преобразований сигналов (ограничение, детектирование, модуляция и т. п.) 3) линейные инерционные звенья для выполнения дифференцирования, интегрирования, фильтрации сигналов. Инерционные элементы представлены отношениями преобразованных по Лапласу или Фурье выходных и входных фазовых переменных. При анализе во временной области применяют преобразование Лапласа, модель инерционного элемента с одним входом и одним выходом есть передаточная функция, а при анализе в частотной области — преобразование Фурье, модель элемента есть выражения амплитудно-частотной и частотно-фазовой характеристик. При наличии нескольких входов и выходов ММ элемента представляется матрицей передаточных функций или частотных характеристик.  [c.186]

Для повышения чувствительности иногда наполняют колбу фотоэлемента каким-либо газом, не вступающим в реакцию с веществом фотокатода. В таких газонаполненных фотоэлементах выбитые из катода электроны при своем движении к аноду ионизируют атомы г аза. Образующиеся в газе ионы и электроны движутся к электродам фотоэлемента, заметно увеличивая исходный фототок. Чувствительность таких устройств велика (она достигает 500 мкА/лм), но их вольт-амперная характеристика имеет более сложный вид, чем обычная зависимость силы фототока от приложенной разности потенциалов, и часто не соблюдается пропорциональность силы фототока и светового потока. Другим недостатком газонаполненных фотоэлементов является их инерционность, приводящая к искажению фронта регистрируемого сигнала и ограничивающая возможность измерения модулированных и быстроизменяющихся световых потоков. При частоте модуляции в несколько килогерц обычно уже невозможно использование газонаполненных фотоэлементов.  [c.437]

Применение такого варианта метода медленно меняющихся амплитуд иногда упрощает нахождение стационарных решений, особенно в задачах, где отсутствует опорное колебание (вызванное, например, внешней силой, модуляцией параметра, синхронизирующим сигналом), фазовый сдвиг (фаза) которого относительно искомого колебания естественно вошел бы в решение. К подобным системам относятся, в частности, пассивные линейные и нелинейные колебательные системы, автоколебательные системы и др. Некоторое облегчение решения задач этот вариант метода ММА дает также в тех случаях, когда нелинейные характеристики каких-либо параметров колебательной системы аппроксимируются высокими степенями разложения в ряд.  [c.75]


Если графики рис. 4.3, а, б представить в виде амплитудно-частотных характеристик параметрически возбуждаемой линейной колебательной системы, то для фиксированных и р они будут иметь вид, показанный на рис. 4.4. Как мы видим, полосы возбуждения сужаются с ростом номера области неустойчивости п, а также из-за наличия диссипации в системе (полосы, ограниченные пунктиром). Из рис. 4.4 видно также, что для выбранного значения глубины модуляции (параметра т) и при данном конкретном значении затухания 26 в системе возбудить параметрические колебания в четвертой области неустойчивости не представляется возможным.  [c.134]

Возможен иной исходный вид фактора неопределенности г(з. Напри.мер, суммарная характеристика, от которой зависят А ж В. Однако предсказать, как она будет изменяться в условиях функционирования, трудно. Здесь следуют такие методологические приемы сложную функцию подвергают декомпозиции с последующей модуляцией ее компонентов, выделяется известная и неизвестные части. Наличие. микропроцессоров позволяет все эти задачи сейчас полностью решать в нужных нам пределах.  [c.54]

Погрешности из-за неодинаковых изменений характеристик приемников излучений в данной схеме остаются. Они могут быть устранены применением компенсационных схем с одним общим приемником излучения (рис. 73, в). Два потока излучения попеременно попадают на один и тот же приемник излучения 2. Модуляция потоков осуществляется вращающимся диском I с окном, который попеременно открывает приемник излучения то потоку то потоку 1из-  [c.122]

Прибор работает по методу частотной модуляции. Описаны принципиальная схема прибора и методика наладки, даны точностные его характеристики, рассмотрены, области применения.  [c.437]

Квантовые интерферометры на основе лазера с трехзеркальным резонатором. На рис, 137 приведена схема лазера с трехзеркальным резонатором. Зеркала I н 3 вместе с активной средой 2 образуют лазер. Изменение длины оптического пути либо за счет перемещения зеркала 4, либо за счет изменения характеристик среды между зеркалами 3 и 4 приведет к модуляции интенсивности лазерного излучения.  [c.233]

Система оснащена пакетом модульных программ, обеспечивающих виброакустический контроль и диагностирование дефектов контактирующих поверхностей (питтинг, заедание, абразивный износ) зубчатых механизмов, подщипников качения и скольжения, повреждений лопаток турбины, лопастей насоса и других роторных механизмов. Пакет прикладных программ обеспечивает распознавание технических состояний на основе сравнения мер близости - мерных векторов диагностических признаков с эталонными векторами. Диагностические признаки формируются из спектральных компонент гармонического ряда характерных частот спектров амплитудной, частотной и амплитудно-импульсной модуляции и из вероятностных характеристик виброакустического сигнала.  [c.229]

Характеристиками Ф являются зависимости фототека от длины волны — спектральная фототока от светового потока — световая переменной составляющей напряжения на нагрузочном сопротивлении от частоты модуляции светового потока — частотная.  [c.562]

В ЛПИ разработана конструкция высокочастотного емкостного преобразователя, представляющего собой прецизионный прибор для измерения статических давлений [31. Принцип действия основан на выделении разностной частоты двух генераторов, частотная модуляция которых осуществляется изменением емкости колебательного контура. Дифференциальная схема преобразователя обеспечивает выравнивание его выходной характеристики, повышает реальную чувствительность, снижает требования к стабильности напряжения питания.  [c.133]

Низкие характеристики Плохая модуляция Отсутствие модуляции Нет генерации колебаний Низкий выходной сигнал Отсутствие выходного сигнала Перегрев Плохая регулировка Слабый отклик  [c.276]

Структурные схемы Р. у. различны в зависимости от требований к характеристикам формируемых в пш радиосигналов. Типовые Р. у. для радиовещания с амплитудной (АМ) или частотной (ЧМ) модуляцией строятся обычно по многокаскадной схеме (рис. 1, а, б).  [c.226]


Важной характеристикой Р. у. является величина кпд т — отношение Рос к полной мощности, потребляемой Р. у, от источника питания. Так, для вещательных Р. у. в режиме отсутствия модуляции т) = 60%, в Р. у. межконтинентальной связи на длинных волнах при очень большой мощности (500—2000 кВт) в телеграфном режиме достигается ц == (50—60)%.  [c.228]

Основным недостатком модуляторов является невысокое пропускание света пластикой магнитооптического материала кроме того, имеется некоторая сложность коммутации токовых цепей при токе 1,0. .. 1,2 А и возможность деградации пермаллоевых электродов. Последнее ограничение ослабляется при снижении амплитуды токовых импульсов, которое в свою очередь возможно при уменьшении намагниченности насыщения магнитооптического материала и при уменьшении толщины образца [21]. Но в последнем случае ухудшаются характеристики модуляции света — эффективность и стабильность переключения, оптический контраст.  [c.83]

Анализ работы фотоэлектрических МДП-структур, а также прома . показывает, что с экранированием электрического поля в объеме полупроводника возрастает напряжение на диэлектрических слоях структуры МДП. Поэтому использование эффективного электрооптлческого диэлектрика могло бы позволить добиться аналогичного (с точки зрения пространственной модуляции света) эффекта, а при параметрах его, лучших по сравнению е кристаллами силиката висмута и им подобными, обеспечить более высокие характеристики модуляции света. Удовлетворить такому условию оказалось возможным при использовании в качестве диэлектрика слоя нематического ЖК или электрооптической керамики.  [c.167]

В силу динамического взаимодействия деталей и других причин в машине возникают упругие колебания, которые нри распространении от места их зарождения претерпевают ряд преобразований, таких как фильтрация, модуляция, нелинейные искажения и т. д. Датчики вибраций или микрофоны воспринимают сложные результирующие сигналы, характеристики которых в общем случае зависят от всех параметров оостояния  [c.19]

Зависимость x=f (v) при 6=0,2, ii=l,24 (восходящий участок Т (U)), у = —0,2 и прямом прохождении представлена на рис. 3, б. Из рисунка отчетливо видны четыре области захватывания ультрагармонических колебаний второго порядка (2v <и), гармонических колебаний (v яа оз), субгармонических колебаний второго (уя= 2ш) и третьего (v 3oj) порядков. В окрестностях этих областей располагаются зоны почти периодических колебаний, вырождающихся из соответствующих захватывающих колебаний. Существенное влияние на форму и величину амплитудных кривых оказывает жесткая характеристика (у >0) упругой восстанавливающей силы. Следует отметить, что были получены зависимости =f (v) при различных значениях глубины модуляции Ь, скорости и и жесткой характеристики восстанавливающей силы (у >0). Нанример, в области субгармонического захватывания второго порядка (см. рис, 3, а) кривая x=f (v) имеет наклон в правую сторону и максимальная амплитуда при этом меньше максимальной амплитуды, чем в случае у < 0.  [c.28]

Для устройств с частотной или шпротной модуляциями ряд инструментальных погрешностей обусловливаются динамическими характеристиками ключей, зависящими от меж-электродных емкостей ПТ. Длительности переключения составляют для МДП-ПТ десятки не, а для р-п-ПТ — на порядок больше. Е.мкости ПТ обусловливают также погрешность от недозаряда емкости иагрузки и погрешность от кохм-мутациоиных помех. Уровень коммутаи,ионной помехи зависит от скорости нарастания управляющего напряжения. При мгновенном скачке и .и напряжение на выходе составит  [c.107]

Установка имеет следующие технические характеристики. Энергия одномодового излучения в режиме модуляции добротности 0,5 Дж, а длительность импульса 4-10" с. Коэффициент усиления двухкаскадного усилителя 20, размер голографируемой сцены 200x200x1000 мм, пределы измерения разности оптической длины пути от 1 до 60 мкм. Пределы геометрических размеров объекта от 20 до 2-10 мкм. Погрешность результата измерения  [c.311]

Технические характеристики ПЛПУ следующие число каналов связи 1 дальность действия не менее 100 число лучей в передатчике 2 частота следования импульсов 10 кГц, используется частотно-импульсная модуляция масса одного устройства не более 2 кг электропитание 60 и 9 В.  [c.320]

Двухканапьный демодулятор мгновенной ампшпуды и частоты (ДМАЧ). Предназначен для обработки процессов, в частности виброакустических, поддающихся преобразованию в электрические сигналы, в целях вьщеления амплитудной и угловой модуляции этих сигналов. Он применяется в приборном комплексе, реализующем гибридную систему, позволяющую как диагностировать техническое состояние механизмов и машин по характеристикам их вибраций, так и производить анализ данных виброакустических испытаний. Использование прибора, осуществляющего демодуляцию в реальном масштабе времени, позволяет значительно сократить объем вводимой в компьютер информации и соответственно время диагностирования или анализа.  [c.231]

МОДУЛЬ [продольной упругости определяется отношением нормального напряжения в поперечном сечении цилиндрического образца к относительному удлинению при его растяжении сдвига измеряется отношением касательного напряжения в поперечном сечении трубчатого тонкостенного образца к деформации сдвига при его кручении Юнга равен нормальному напряжению, при котором линейный размер тела изменяется в два раза] МОДУЛЯЦИЯ [есть изменение по заданному во времени величин, характеризующих какой-либо регулярный физический процесс колебаний <есть изменение по определенному закону какого-либо из параметров периодических колебаний, осуществляемое за время, значительно большее, чем период колебаний амплитудная выражается в изменении амплитуды фазовая указывает на изменение их фазы частотная состоит в изменении их частоты) пространственная заключается в изменении в пространстве характеристик постоянного во времени колебательного процесса] МОЛЕКУЛА [есть наименьшая устойчивая частица данного вещества, обладающая его химическими свойствами атомная (гомеополярная) возникает в результате взаимного притяжения нейтральных атомов ионная (гетерополярная) образуется в результате превращения взаимодействующих атомов в противоположно электрически заряженные и взаимно притягивающиеся ионы эксимерная является корот-коживущим соединением атомов инертных газов друг с другом, с галогенами или кислородом, существующим только в возбужденном состоянии и входящим в состав активной среды лазеров некоторых типов МОЛНИЯ <есть чрезвычайно сильный электрический разряд между облаками или между облаками и землей линейная является гигантским электрическим искровым разрядом в атмосфере с диаметром канала от 10 до 25 см и длиной до нескольких километров при максимальной силе тока до ЮОкА)  [c.250]


С помощью зондирующего излучения можно изучать модуляцию оптич. характеристик среды (модуляц. вариант А. л. с.), вызываемую и-злучением накачки кроме того, благодаря возмущению среды накачкой могут появляться новые спектральные или пространств.  [c.38]

S мостью получения определённого распределения фаз в Х фазокодированном сигнале (рис. 6, 6). Дисперс. УЛЗ, ирименяемые для пассивного формирования и сжатия частотво-модулированных(ЧМ) сигналов, позволяют относительно просто задавать как линейный, так и нелинейный законы частотной модуляции, обеспечивая любой (положит, или отрицат.) наклон дисиерсиоыиой характеристики (рис. 7). Дисперсия здесь имитируется благодаря разнице в расстояниях между участками входной и выходной решёток, работающими на разных частотах. Такие УЛЗ формируют ЧМ-сигналы длительностью до 200—250 МКС, Д///(, может составлять до  [c.596]

МЕРЦАНИЙ МЕТОД — метод определения параметров турбулентной среды и источника, к-рым просвечивается среда, на основе измерения статистич. характеристик флуктуаций потока излучения, вызванных модуляцией волн неоднородностями показателя прело.м-ленин. Метод базируется на теории распространения волн в средах с ноказателем ореломления, являющимся случайной ф-цией координат г (см. Распространение радиоволн в случайно неоднородных средах). Развитие возмущений поля волны начинается с развития фазовых возмущений, затем эффекты фокусировки, дифракции и интерференции приводят к появлению флуктуаций потока — мерцаниям (см. Мерцания радиоволн). Различают два режима мерцаний режим слабых и режим сильных (насыщенных) мерцаний. Движение среды относительно луча зрения преобразует пространств, флуктуации во временные.  [c.99]

МОДУЛЯЦИЯ КОЛЕБАНИЙ — изменение разл. характеристик колебаний, медленное по сравнению с их периодом (см. Модулированные колебания). МОДУЛЯЦИЯ СВЕТА (модуляция оптического излучения) — изменение по заданному закону во времени амплитуды (интенсивности), частоты, фазы или поляризации колебаний оптич, излучения. Применяется для управления световыми пучками с целью передачи информации при помощи оптич. сигналов или для формирования световых потоков с определ. параметрами. В зависимости от того, какая характеристика подвергается изменению, различают амплитудную, фазовую, частотную или поляризационную М. с. Для излучений видимого и ближнего ИК-диапааонов (Ю —8-10 Гц) возможны частоты модуляции с верх, пределом до 10 — 10 Гц. Естественная М. с. происходит при испускании света элементарными излучателями (атомами, ионами) независимость испускания такими излучателями фотонов и различие в частоте последних приводит к тому, что излучение содержит набор частот и флуктуирует по амплитуде, т. е, является амплитудно-частотно-модулированным. Естеств. частотная М. с. происходит также при неупругом рассеянии света на внутримолекулярных колебаниях (см. Комбинационное рассеяние света) и на упругих волнах в конденсиров. средах (см. Мандельштама — Бриллюана рассеяние). В обоих случаях рассеянный свет содержит частоты, отличные от частоты падающего света.  [c.183]

Существует много способов М. с. на основе физ. аффектов (алектрооптический, магнитооптический, упругооптический и др.), возникающих при распространении света в разл. средах. Для такой М. с. применяют управляемый двулучепреломляющий элемент из материала, обладающего естественной или наведённой анизотропией. Внеш. управляющее поле (напр., электрическое или поле упругих напряжений) приводит к изменению оптич. характеристик среды. В широко распространённых модуляторах на основе Покпельса эффекта фазовый сдвиг между обыкновенным и необыкновенным лучами линейно зависит от величины напряжённости электрич. ноля, а в модуляторах на основе Керра эффекта — зависимость квадратичная. Для получения амплитудной М. с. электрооптич. вещество обычно помещают между скрещенными поляризаторами. Важным свойством электрооптич. эффекта является его малая инерционность, позволяющая осуществлять М, с. вплоть до частот 10 Гц. В электрооптич. модуляторах ослабление модулирующего сигнала не зависит от интенсивности модулируемого света, и потому для увеличения глубины модуляции используют многократное прохождение света через один и тот же модулирующий кристалл. Примером может служить модулятор на основе интерферометра Фабри — Перо, заполненного электрооптич. средой.  [c.184]

М. м. могут использоваться и для описания преобразования поляризации света оптич. элементами с за-висяпщми от времени поляриэац. характеристиками (напр., при поляризац. модуляции света). При этом элементы соответствующей М. м. также становятся ф-циями времени. М. м. простейших поляризац. элементов затабулированы и приводятся в монографиях по поляризац. онтике.  [c.225]

Параметры систем О. л. зависят от характеристик осн. используемых узлов лазера, фотоприёмника, сканирующего устройства, модулятора и т. д. Наиб, широко в О. л. применяются лазеры, генерирующие в ИК-области спектра,— полупроводниковые, твердотельные, газовые. Полупроводниковые лазеры обеспечивают как непрерывный режим (до сотен мВт), так и импульсный (до сотен Вт) в ближней ИК-области спектра (X X 0,8—0,9 мкм). Модуляция полупроводниковых лазеров, как правило, осуществляется током накачки. Иа твердотельных лазеров в О. л. используются лазеры на разл. матрицах, активированных ионами неодима, в частности на основе алюмоиттриевого граната (A, = 1,06 мкм). Лазер на гранате, обладающий низким порогом возбуждения и хорошей теплопроводностью, может работать при больших частотах повторения импульсов, а также и в непрерывном режиме излучения при кпд до 3%. Предпочтительны в О. л. лазеры на двуокиси углерода (СО,-лазеры) с X 10,6 мкм, имеющие большой кпд (- 10%), мощность излучения от единиц Вт до кВт в непрерывном и МВт в импульсном режимах, узкую линию излучения (неск. кГц).  [c.433]

Наряду с быстродействием и помехозащищённостью волоконные линии передачи сигналов информации должны обладать достоверностью и стабильностью метрологич. характеристик. Это практически исключает использование в ВОЛС амплитудной модуляции, т. к. величина сигнала на выходе линии связи зависит от обстановки в линии связи, в частности от затухания. Кроме того, деградация со временем излучателей и приёмников, температурные эффекты и др. факт ы могут приводить к ухудшению качества связи. Наиб, перспективной является передача цифровой информации с помощью импульсных методов модуляции.  [c.442]

ОПТОВОЛОКОННЫЕ ПРИЕМНИКИ ЗВУКА — приёмники, действие к-рых основано на изменении параметров световода (показателя преломления, длины, формы и т. п.) под действием звуковой волны и возникающей в результате этого модуляции характеристик световой волны (фазы, поляризации, амплитуды), распространяющейся в световоде. В состав О. п. з. входят источник света (лазер, светодиод), чувствит. элемент— световод и фотоприёмник, регистрирующий изменения мощности света на выходе световода, либо оптич. сис-  [c.460]

В параметрич. излучателе в одной случае — две ВЧ-волны (т. н, компоненты волны накачки), взаимодействуя друг с другом, порождают волну разностной частоты, излучаемую из области взаимодействия в другом — модулированная по амплитуде или частоте ВЧ-волна накачки в результате детектирования средой возбуждает НЧ-волну на частоте модуляции. Область нелинейного взаим )действия является своеобразной бестелесной антенной, размеры к-рой определяют характеристику направленности нз-лучателя. Поэтому даже при малых размерах излучателей волны накачки удаётся получить остронаправленное НЧ-излучение. Наряду с высокой направленностью достоинство параметрич. излучателя — отсутствие боковых лепестков диаграммы направленности и широко-полосность для существенного относительного изменения частоты излучения достаточно весьма незначительного изменения частоты накачки (в пределах ширины полосы резонансного излучателя волны накачки). Осн. недостаток параметрич. излучателя — его невысокая з ективность доля энергии накачки, идущая на НЧ-излучение, обычно невелика и зависит от соотношения частот получаемой волны со, и накачки (о . Для оптимального режима отношение мощности НЧ-излучения Wg к мощности накачки определяется ф-лой  [c.535]


Р. у. формируют радиосигналы с заданными характеристиками, необходимыми для работы конкретных ра-диотехн, систем, и излучают их в пространство. В любых Р. у. осуществляются следующие осн. физ. процессы генерация эл.-магн. колебаний в заданном участке радподиапазона управление параметрами этих колебаний (амплитудой, частотой, фазой, поляризацией и т. д.) по закону передаваемой информации (амплитудная, частотная и др. виды модуляции см. Модулированные колебания) излучение радиосигналов в пространство ири помощи антенны, связанной с генератором электромагнитных колебаний либо непосредственно, либо через линию связи. Помимо создания радиосигналов, предназначенных специально для передачи информации, Р, у. применяются в системах радионавигации, ди-станц. зондирования земной поверхности и др. целей.  [c.226]

Детекторные . СВЧ строятся на основе сосредоточенных детекторов на ДБШ и распределённых болометров. Гаковыми являются электронные болометры на разогреве электронов в полупроводнике п — InSb и сверхпроводниковых плёнках, а также обычные болометры на разогреве материала болометра (напр., полупроводника Ge и сверхпроводниковых плёнок). Оса. характеристики детекторных Р. предельная чувствительность Рцр (для возможности сравнения раэл. детекторных Р. эта величина приводится к приёмной площадке 5=1 см я полосе усилителя детектируемого сигнала AF — 1 Гц) предельная частота модуляции принимаемого сигнала F , при к-рой амплитуда детектируемого сигнала уменьшается в е раз (в болометрах связана со скоростью отвода тепловой энергии от электронов в электронных болометрах вли от всего приёмного элемента в обычных болометрах) рабочая темп-ра Гр рабочий диапазон длин волн (табл.).  [c.230]

Верность воспроизведения сообщений — это способность Р. у. в отсутствие помех воспроизводить на выходе с заданной точностью закон модуляции принимаемых сигналов. Количественно оценивается искаженнями, т. е. изменениями формы выходного сигнала по сравнению с модулирующей ф-цией.. Линейные (амплитудные и фазовые) искажения, обусловленные инерционностью элементов УТ, не сопровождаются появлением в спектре сигнала новых составляющих, не зависят от уровня входного сигнала и глубины модуляции амплитудные искажения проявляются в изменении соотношения амплитуд спектральных составляющих. Оценка фазовых искажений, проявляющихся в неравенстве сдвигов во времени разл. составляющих спектра сигнала при прохождении через УТ, проводится с использованием характеристики группового запаздывания. При слуховом приёме существенны лишь амплитудные искажения, при визуальном, особенно телевизионном,— также и фазовые. Для оценки линейных искажений при визуальном приёме пользуются, кроме того, т. н. переходной характеристикой Р. у., представляющей временную зависимость выходного напряжения при подаче сигнала с единичным скачком модулирующего напряжения.  [c.232]

Помехоустойчивость — способность Р. у. обеспечивать необходимое качество приёма при действии разл. видов помех, разделяемых на мультипликативные, связанные со случайными измевениями свойств среды распространения эл.-магв. волн и приводящие к замираниям, искажениям формы сигнала, межсимвольной интерференции их. п., и аддитивные, образующиеся в результате суммирования посторонних эл.-магн. колебаний с полезным сигналом. Последние делятся на естественные (атмосферные и космич. шумы, шумы теплового излучения Земли) и искусственные, в числе к-рых создаваемые сторонними радиопередатчиками, индустриальные и т. п. Помехи, не попадающие в ООН. канал приёма (внеканальные), ослабляются цепями, обеспечивающими частотную избирательность Р. у. Для подавления внутриканальных помех используется отличие их спектральных, временных н др. характеристик от характеристик сигнала, для чего применяют помехоустойчивые виды модуляции, корректирующие коды и спец, виды обработки сигналов. Для количеств, оценки помехоустойчивости используются вероятностный, энергетич. и артикуляц. критерии. Под восприимчивостью Р. у. понимают его реакцию на помехи, действующие как на антенну, так и на др. цепи — питания, управления и коммутации.  [c.232]


Смотреть страницы где упоминается термин Характеристики модуляции : [c.417]    [c.118]    [c.176]    [c.113]    [c.130]    [c.169]    [c.6]    [c.231]    [c.425]    [c.206]   
Линейные и нелинейные волны (0) -- [ c.494 ]



ПОИСК



Модуляция

Физические характеристики, модуляция светового излучения и перенос информации об объекте



© 2025 Mash-xxl.info Реклама на сайте