Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лопатка Нагрузки

Относительно короткую лопатку (при — >12) обычно рассматривают как консольную балку с жёстко заделанным концом и равномерно распределенной по длине лопатки нагрузкой, т. е. пренебрегают переменностью как давлений, так и скоростей по высоте лопатки. В этом случае интенсивность нагрузки  [c.55]

Если учесть, что У] ( ) представляет собой статический прогиб от распределенной по длине лопатки нагрузки интенсивности ,  [c.158]

Направляющие лопатки турбин работают в условиях косого изгиба, так как плоскость, в которой действует на лопатку нагрузка, не совпадает, как правило, с плоскостями главных центральных осей сечения лопатки. Расчет направляющих лопаток осложняется еще и тем, что характер закрепления их краев может быть различным для осевого и окружного направлений. Это приводит, как правило, к статически неопределимой задаче и только в отдельных случаях, как, например, для консольных направляющих лопаток турбин с реактивным облопачиванием, расчет может быть упрощен. Попутно заметим, что указанные выше обстоятельства встречаются и при расчете некоторых специальных конструкций рабочих лопаток [44].  [c.340]


В конструкции 3 зубья выполнены по отношению к пазам е зазорами Й1, /72, /7з, последовательно возрастающими от хвостовика к цоколю. При растяжении лопатки рабочие поверхности зубьев смыкаются с упорными поверхностями пазов ротора, нагрузка между зубьями распределяется более равномерно, отчего соединение становится прочнее. Практически в конструкции елочных соединений учитывают еще тепловые деформации, вызванные неравномерным нагревом лопаток и межлопаточных участков ротора, а также ползучесть материала хвостовика.  [c.587]

Назначение — различные улучшаемые детали валы, оси, убчатые колеса, тормозные ленты моторов, фланцы, корпуса обшивки, лопатки компрессорных машин, рычаги, толкатели, ответственные сварные конструкции, работающие при знакопеременных нагрузках, крепежные детали.  [c.205]

Назначение — детали с повышенной пластичностью, подвергающиеся ударным нагрузкам (клапаны гидравлических прессов, предметы домашнего обихода), а также изделия, подвергающиеся действию слабоагрессивных сред (атмосферные осадки, водные растворы солей органических кислот при комнатной температуре н другие), лопатки паровых турбин, клапаны, болты и трубы. Сталь коррозионно-стойкая и жаростойкая ферритного класса.  [c.458]

Так как лопатки турбин в процессе эксплуатации подвергаются ударным и вибрационным нагрузкам, то показатель адгезии является одним из главных.  [c.209]

В процессе длительной эксплуатации ГТД на турбинные лопатки действуют осевая нагрузка, крутящий момент М р, который вызывает действующие силы на изгиб (Я з,.), и растягивающая нагрузка, возникающая в результате центробежной силы Яц (рис. 206). Таким образом, от действий трех сил Рос, изг и Рц возникают напряжения, которые вызывают усталостное разрушение лопатки. Типичные виды разрушившихся лопаток приведены на рис. 208. Поверхность излома, как правило, перпендикулярна к оси лопатки, т.е. разрушение происходит по поперечному сечению пера лопатки.  [c.418]

С увеличением нагрузки до > О, 5 > О и > О в рабочей полости появится циркуляция жидкости. На нее станут действовать, кроме упомянутых центробежных, гидродинамические силы от взаимодействия с лопатками колес. В насосном колесе обе эти силы будут направлены от оси вращения к периферии, в турбинном — гидродинамическая сила будет направлена обратно. Так как  [c.238]

При нормальной работе гидромуфты дополнительная полость в рабочем колесе насоса практически не заполнена жидкостью. С приближением нагрузки к максимально допустимой жидкость из турбинного колеса начинает поступать в дополнительную камеру по схеме, приведенной на рис. 14.8, в. Чтобы не допустить провалов на моментной характеристике, опоражнивание рабочей полости не должно быть чрезмерно интенсивным. Для этого на входе в дополнительную камеру (см. рис. 14.11, а) установлен порог с крыльчаткой 4. Жидкость, вытекающая из турбинного колеса, взаимодействует с лопатками крыльчатки, в результате чего создается встречный поток, уменьшающий интенсивность опоражнивания рабочей полости. Кроме того, под действием этого потока увеличивается радиус входа жидкости в насосное колесо. Одновременное уменьшение Q и в уравнении (14.5)  [c.244]


Как показано на рис. 10.6, атмосферный воздух сжимается в компрессоре 1 до давления 0,8—3,0 МПа. Затем воздух посту-.пает в камеру сгорания 2, куда подается жидкое или газообразное топливо В. Топливо сгорает практически при постоянном давлении, температура в активной зоне камеры сгорания, обеспечивающая полный и достаточно быстрый процесс окисления топлива, составляет 1800—2300 К, тогда как температура продуктов сгорания (газов) перед турбиной должна быть значительно ниже, исходя из прочности лопаток турбины. Температура перед турбиной в современных ГТУ может быть 1100— 1500 К. Для снижения температуры газов, выходящих из камеры сгорания, часть воздуха, подаваемого компрессором, проходит, минуя активную зону камеры сгорания, и, перемешиваясь с высокотемпературными продуктами сгорания, обеспечивает снижение температуры общего потока продуктов сгорания перед турбиной до заданного значения. Продукты сгорания поступают в турбину 3, где при их расширении кинетическая энергия преобразуется в работу на лопатках турбины, соединенных с валом. Вал установки 4 соединяет турбину, компрессор и полезную нагрузку 5, например электрогенератор или нагнетатель транспортируемого природного газа.  [c.146]

Высокопрочные чугуны применяют в различных отраслях техники, эффективно заменяя стать во многих изделиях и конструкциях. Например, корпуса паровых турбин, насосов, вентилей, лопатки направляющего аппарата, коленчатые валы, поршни и другие ответственные детали, работающие при высоких циклических нагрузках и в условиях изнашивания.  [c.61]

Трехопорную лопатку рассчитывают на прочность (рис. IV. 19, а и б) как балку переменной жесткости, нагруженную равномерно распределенной гидравлической нагрузкой, интенсивность которой на единицу длины пера равна  [c.121]

Расчет двухопорных лопаток конического направляющего аппарата с пером переменного по размерам сечения (рис. IV.20, а) ведется как расчет балки на двух опорах, нагруженной в области пера равномерным гидравлическим давлением и силой рычага, приложенной за одной из цапф лопатки. Схема нагружения представлена на рис. IV.20, б. Интенсивность нагрузки на единицу длины пера является переменной и составляет  [c.126]

Рабочие лопатки являются наиболее ответственными деталями ротора, поскольку они используются для превращения кинетической энергии пара в механическую работу на валу турбины, вследствие чего лопатки испытывают большие напряжения от усилий, создаваемых потоком пара. Кроме того, они находятся под действием значительных центробежных сил, возникающих при вращении. Лопатки жестко закрепляют на дисках. На рис. 31-11 схематически изображены некоторые из способов крепления лопаток на дисках, расположенные в порядке увеличения нагрузки на них. Если пользуются лопатками без утолщения в месте крепления (хвостовой части), то для образования канала между  [c.353]

Влияние температуры. С увеличением температуры предел выносливости уменьшается. Это важно учитывать при расчете деталей, работающих при повторно-переменных нагрузках в условиях высоких температур (лопатки паровых и газовых турбин, клапаны двигателей внутреннего сгорания и т. д.). Так, например, для стали ЗОХМ увеличение температуры от 20° до 400—500° снижает предел выносливости на 22%.  [c.203]

Определение напряжений изгиба. Лопатка рассматривается как консольная балка с жестко заделанным концом и с равномерно распределенной по длине изгибающей нагрузкой.  [c.277]

Основные понятия. Если к лопатке приложить, а затем мгновенно убрать внешнюю нагрузку, лопатка под действием сил упругости начнет совершать колебательное движение. Колебания ха-  [c.280]

Для испытания на растяжение используют образцы п виде полосок толщиной к. Крепление накладок на концах полосок придает образцу форму лопатки по толщине в отличие от общепринятой формы в виде лопатки по ширине. Последняя для испытания образцов из высокомодульных материалов неприемлема вследствие существенной неравномерности распределения напряжений по сечениям в местах приложения нагрузки.  [c.27]


Развитая поверхность берегов усталостной трещины препятствует заполнению полости трещины суспензией или расплавленным металлом, если предварительно не произошло ее раскрытие путем растяжения детали. Поэтому плотность стыка в полости усталостной трещины в рассмотренных выше способах не может быть в полной мере обеспечена без осуществления дополнительных операций над деталью, которые направлены на устранение шероховатой поверхности берегов трещины. С этой целью, например, лопатку со сквозной трещиной следует подвергать растяжению и фиксировать нагрузку в момент раскрытия берегов трещины (А. с. 1328133 СССР. Опубл.  [c.453]

Бюл. № 29). Далее надлежит произвести продольные взаимные перемещения берегов трещины в динамическом режиме колебаний лопатки. С момента осуществления динамического нагружения постепенно уменьшают растяжение и переходят к сжатию. Максимальная нагрузка сжатия должна равняться двойной нагрузке в момент раскрытия берегов трещины. После этого плавно снимают продольное динамическое перемещение. Усилить эффект от применения последовательно-  [c.453]

Лопатки турбин в условиях эксплуатации, как правило, накапливают повреждения более устойчиво, чем лопатки компрессора. Это связано с тем, что они подвергаются постоянному нагреву при длительном статическом растяжении под действием динамической нагрузки от вращения ротора. В этом случае возможно возникновение такого явления, как ползучесть или термоциклическое разупрочнение материала в результате теплосмен по циклу ПЦН. Каждый механизм исчерпания долговечности лопатки имеет свою длительность действия, и поэтому разрушение лопатки на разных стадиях эксплуатации отвечает разным критериям прочности. В результате этого распределение долговечности лопаток может иметь не один, а несколько максимумов по числу случаев разрушения, в зависимости от того, какие виды механизмов разрушения могут последовательно доминировать при исчерпании ресурса лопатки.  [c.567]

Лопатки компрессоров и турбин газотурбинных двигателей (ГТД) в процессе нормальных условий эксплуатации подвергаются растяжению под действием динамической нагрузки от вращения ротора с изгибом и скручиванием под действием газодинамического потока. Частота и форма колебаний лопатки неоднородны по ее высоте, что соответствует переменному двухосному напряженному состоянию. Для различных ступеней частота собственных колебаний лопаток различна и составляет от несколько сот герц для первых ступеней вентилятора до нескольких тысяч герц для последних ступеней компрессора.  [c.567]

Разрушение лопатки имеет усталостный характер на протяжении 2/3 вдоль хорды. Остальная часть 1/3 лопатки имеет долом от однократного или повторно статического приложения нагрузки. На участке распространения трещины имеются следующие особенности рельефа излома (см. рис. 11.76). На поверхности корыта, примерно в средней части хорды, имеются два самостоятельных участка усталостного излома протяженностью по поверхности 7 и 15 мм. Прорастание усталостных трещин произошло примерно до середины сечения в данной зоне. Со стороны спинки также имеется участок развития усталости протяженностью примерно 30 мм. Очаг этой усталостной. трещины расположен вблизи середины хорды.  [c.577]

Сделанная оценка не противоречит классическим представлениям о соотношении между периодом зарождения и ростом трещин в области многоцикловой усталости. Для гладкой поверхности на пороге усталости период роста трещины составляет до 10 % от общей долговечности образца. По мере возрастания концентрации нагрузки доля периода роста трещины относительно всей долговечности возрастает и может составлять 100 % при статическом надрыве материала. В нашем случае наработка лопатки составила 886 полетов при многоцикловом разрушении. Если предположить, что трещина зародилась естественным путем в лопатке, период роста трещины составляет около 35 %. Эта оценка минимум в 3 раза завышена по отношению к указанным выше известным данным о соотношении между периодом роста трещины и полной долговечностью. Следовательно, именно коррозионное растрескивание материала вызвало существенное снижение усталостной прочности лопатки (в несколько раз) на этапе зарождения усталостной трещины и привело к ее преждевременному разрушению.  [c.579]

Итак, разрушение лопатки реализовано в области многоцикловой усталости при низком уровне эквивалентного напряжения. Множество очагов свидетельствует о высоком уровне концентрации нагрузки вдоль зуба.  [c.585]

Последний полет самолета, а следовательно, работа лопатки с развивающейся трещиной, продолжался в течение 12 мин. Массивная лопатка первой ступени вентилятора имеет максимальный уровень резонансных напряжений на частоте 200 Гц. Если предположить, что в течение всего последнего полета лопатка имела резонанс на указанной частоте нагружения (т. е. на нее все время в полете действовала максимальная переменная нагрузка), то длительность ее работы составит 12 X 60 X 200 = 144000 циклов. Следовательно, даже если лопатка все время в полете находится в условиях резонанса с указанной частотой колебаний, когда и реализуется в ней максимальный уровень напряжения, то период роста трещины в ней мог быть реализован не менее чем в двух полетах. Трещина в лопатке в предыдущем полете уже была.  [c.585]

В узле крепления турбинной лопатки в роторе на елочном замке (рис. 425, ж) рабочие поверхности трапецеидальных зубьев лопатки, воспринимающие центробежную силу Р, в исходном положении соприкасаются с упорными поверхностями пазов ротора. С приложением нагрузки комлевая часть хвостовика растягивается тело ротора, обладающее больщой жесткостью, деформируется в меньшей степени. Вследствие этого нагрузку воспринимают преимущественно первые зубья (см. эпюру).  [c.587]


При анализе системы "литейный стержень - литейная оболочка ее необходимо рассматривать как конструкцию, которая в процессе технологического цикла подвержена термическим и механическим нагрузкам. В литейном стержне и литейной оболочке в случае их нагрузки возникает сложно-напряженное состояние, включающее напряжение изгиба, среза и растяжения или сжатия. Это явление описывается тремя уравнениями уравнением прогиба, угла поворсзта и осевого усилия. При выводе уравнений приняты координаты X - в направлении ширины (хорды) пера лопатки Y -в направлении оси пера лопатки Z - в направлении толщины пера лопатки  [c.405]

Нагрузка с одном лопатки Л —Л й [ст] = 1,2.4-2500= 12000 к/. Погоппая нагрузка от сил инерции обода  [c.408]

Гидродинамическая передача Мекидро с передвижной турбиной (рис. 115) с прямыми и обратными лопатками нашла применение в тепловозостроении из-за простоты и надежности переключений передач без дополнительных элементов. В представленной конструкции переключение передач происходит без нагрузки. Это достигается синхронным перемещением турбины в осевом направлении. При переключении подается жидкость в сервомотор так, что турбина перемещается в тор, а на ее место встает лопастная система с укороченными лопастями, раскручивающими поток до AvuR = 0. Следовательно, крутящий момент на турбинном валу будет близким к нулю. Вся система переключений действует автоматически.  [c.226]

Испытание диафрагм. Кованые и сварные диафрагмы изготовляют из стали, полотно и обод со стальными залитыми лопатками — из чугуна. Диафрагмы подвергают испытаниям на прогиб с целью проверки прочности и жесткости соединения обода и полотна посредством лопаток. Критерием оценки при испытаниях служит величина стрелки прогиба, которая зависит от паровой нагрузки, Бозникаюш,ей при работе диафрагмы в натурных условиях. При испытаниях в цехе паровую нагрузку заменяют сосредоточенной силой.  [c.35]

Неисправности при проворачивании турбин валоповоротным устройством, в процессе проворачивания появляется ненормальное увеличение нагрузки на электродвигатель или резкие ее колебания. Слышен характерный звук задевания. Наиболее вероятные причины неисправно вало1юворотное устройство не отжат тормоз валопровода не отжат дейдвудный сальник, загрязнена дейдвудная труба или втулка кронштейна гребного вала повреждены коррозией шейки валов загрязнены подшипники и зубья передачи, отсутствует смазка на гребной винт попали посторонние предметы лопатки ротора задевают о корпус или имеются задевания в уплотнениях в корпус турбины попала вода.  [c.335]

Изучались вновь изготовленные лопатки, а также лопатки, испытанные в течение 130, 450 и 900 час. Микротвердость измерялась на косых шлифах, вырезанных из различных зон пера лопаток, на приборе ПМТ-3 при нагрузке на индентор 50 г. Механические свойства определялись при кратковременном растяжении при 20° С на плоских микрообразцах, толщиной 0.5 мм. Часть образцов вырезалась непосредственно из поверхностного слоя деталей (как со стороны сшшки, так и со стороны корыта лопаток), другая часть — из сердцевины лопаток.  [c.166]

Первоначально на поверхности лопатки в разных ее местах произошло коррозионное растрескивание материала. В зонах наибольшей концентрации нагрузки от изгибной формы колебаний произоптло зарождение и распространение усталостных трещин по двум сечениям около наружной полки и бобышки лопатки. Первоначальное разрушение на все сечение произошло около наружной полки лопатки, а разрушение у бобышки произошло в результате резкого возрастания нагрузок при уже развившихся усталостных трещинах от нескольких очагов, имевших место в результате коррозионного растрескивания материала. Длительность процесса разрушения всей лопатки составляет не менее 285 полетов после сформирования коррозионных изъязвлений поверхности.  [c.579]


Смотреть страницы где упоминается термин Лопатка Нагрузки : [c.250]    [c.447]    [c.174]    [c.96]    [c.36]    [c.138]    [c.121]    [c.220]    [c.220]    [c.176]    [c.4]    [c.27]    [c.27]    [c.86]    [c.580]   
Термопрочность деталей машин (1975) -- [ c.297 , c.300 ]



ПОИСК



Лопатка



© 2025 Mash-xxl.info Реклама на сайте