Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Моменты локализованные

О чем, в частности, свидетельствует сохранение и даже возрастание магнитных моментов, локализованных на их атомах, тогда как никель в таких сплавах теряет свой магнитный момент [11]. Термодинамические свойства сплавов таких систем, как Сг — Аи [12] и Мп — Ag [13], отражают специфический характер взаимодействия компонентов. Практически во всей области существования твердых растворов парциальные теплоты смешения для хрома и марганца положительны и аномально зависят от состава (возрастают с ростом содержания переходного металла), тогда как парциальные теплоты для золота и серебра отрицательны и малы по абсолютной величине (рис. 2). Можно полагать, что хром и марганец также претерпевают существенные изменения своего электронного состояния, входя в матрицу твердого раствора, однако эти изменения требуют определенных затрат энергии. Известно, что марганец и хром  [c.157]


Существенный вклад в ширину полос инфракрасного поглощения вносят флуктуации энергии межмолекулярных взаимодействий, обусловленные тепловым движением частиц среды [2, 21]. Если молекулы обладают большими дипольными моментами, локализованными на концевых связях, то в жидкостях могут возникать локальные различия диполь-дипольных сил, моделирующие параметры колебательного движения атомов и, в частности, их частоту. Статистические различия межмолекулярных сил могут проявляться также в неполярных растворах вследствие флуктуаций числа частиц, входящих в первый координационный слой молекулы. Они приводят к отклонению локальных значений плотности, диэлектрической постоянной и показателя преломления среды от их средних значений. В результате возмущений частот внутримолекулярных колебаний в ИК-спектре возможно появление совокупности полос определенного колебательного перехода, смещенных друг относительно друга и имеющих свою ширину и форму. Огибающая совокупности полос дает сложный статистический контур. Механизм уширений, при котором ширина полосы определяется наложением элементарных составляющих, каждая из которых возникает за счет поглощения молекул, находящихся в неодинаковых условиях окружения, называется неоднородным.  [c.145]

До сих пор мы не использовали представление Блоха для исходной кристаллической решетки. Пусть теперь произвольная случайная переменная М соответствует узлу решетки с номером I. Роль этой переменной может играть, например, магнитный момент локализованного спина или малое смеш ение атома из своего узла. Предположим, далее, что рассматриваемая физическая модель обладает трансляционной инвариантностью решетки. Тогда естественно ввести новые переменные с помощью преобразования Фурье  [c.48]

Выше отмечалось, что при низких температурах в почти чистых металлах удельное сопротивление сильно зависит от концентрации примесей и дефектов. Интересные эффекты наблюдаются, когда очень малое количество магнитного металла растворено в каком-либо немагнитном металле. Эти эффекты возникают, когда растворенная магнитная примесь образует то, что называется локализованными магнитными моментами. Вопрос о том, будет ли локализованный момент возникать в конкретном разбавленном сплаве, слишком сложен, чтобы рассмат-  [c.195]

Отметим, что локализованные магнитные моменты могут быть связаны не только с магнитными атомами. Так, А. Ф. Хохлов и П. В. Павлов наблюдали возникновение ферромагнитного упорядочения в аморфном кремнии. Здесь нет атомов с недостроенными внутренними оболочками, однако имеются оборванные ковалентные связи. На каждой такой связи локализован неспаренный электрон. В обычных условиях концентрация оборванных связей в аморфном кремнии невелика ( --10 —lO s см- ), поэтому взаимодействия между локализованными на связях магнитными моментами нет. Такое вещество представляет собой парамагнетик. Однако при высокой плотности оборванных связей, которую можно создать, облучая аморфный кремний ускоренными ионами инертных газов, возникает обменное взаимодействие, приводящее к ферромагнетизму.  [c.340]


Растянутая часть ремня обладает определенной энергией упругой деформации. Эта энергия распределена во всей деформированной части ремня. Если бы растянутый ремень покоился, то и энергия упругой деформации оставалась бы на месте, в растянутой части ремня. Так как ремень движется, го растянутыми оказываются все новые и новые участки ремня, вступающие в верхнюю область между шкивами. При это.м, очевидно, энергия упругой деформации, которой обладает растянутый ремень, не остается неподвижной в одних и тех же местах ремня, а переходит из одних его участков в другие, так что она оказывается локализованной в части ремня, находящейся в данный момент между шкивами. Следовательно, энергия движется по ремню в направлении, противоположном движению самого ремня, но с той же скоростью. Этот случай представляет собой один из простейших примеров течения энергии в движущемся упругом деформированном теле. Вообще, когда упруго деформированное тело или отдельные его участки движутся, с этим связано и перемещение энергии упругой деформации, т. е. течение энергии.  [c.160]

Изложение физической природы предела текучести будет неполным, если не отметить еще одну часто наблюдаемую особенность этого явления, которая заключается в локализованном протекании начальных стадий макродеформации. Происходит это в результате того, что в момент спада нагрузки после верхнего предела текучести образец находится в состоянии механической неустойчивости. Чтобы в таком состоянии деформация образца успевала за деформацией машины, достаточно деформировать не весь образец, а только его часть, но со значительно большей скоростью и степенью деформации. Естественно, что и при такой схеме деформации происходит упрочнение и в некоторый момент становится выгодной ее передача в соседние еще недеформированные области. Происходит, таким образом, постепенное расширение деформированной области, известной под названием полосы Чернова — Людерса (рис. 2.7), а локализованная деформация также называется деформацией Чернова — Людерса [3, 72].  [c.43]

Коррозионно-усталостное разрушение сталей с катодными покрытиями сопровождается понижением их электродных потенциалов от стационарных значений до —600) (—650 мВ), т.е. почти до их уровня у незащищенных разрушающихся сталей. Приложение напряжения к никелированным сталям из-за нарушения сплошности оксидных пленок вызывает сдвиг их потенциалов в отрицательную сторону до 10 мВ. Качественно характер изменения электродного потенциала химически никелированных образцов при испытании в коррозионной среде такой же, как на рис. 27. Длительность II периода также возрастает с повышением прочности стали. Интенсивное понижение потенциала на III участке соответствует моменту потери покрытием сплошности, проникновению коррозионной среды к основному металлу и развитию в нем локализованных процессов коррозионной усталости. Спонтанное разрушение образца сопровождается скачкообразным понижением потенциала на IV участке. Характер изменения электродных потенциалов и кинетика процесса разрушения хромирован-  [c.178]

Локализованные . моменты 1, У f Косвенный 1  [c.373]

Можно отметить следующие особенности разрушений при статическом нагружении при одновременном действии механических нагрузок и рабочих сред. В условиях общей коррозии характер разрушений мало отличается от такового при статическом нагружении в нейтральной среде. В зависимости от качества металла и свойств коррозионной среда разрывы происходят по механизму вязкого или хрупкого разрушения. Важно подчеркнуть, что только лишь в условиях общей коррозии может реализоваться вязкое разрушение бездефектного металла оборудования при нормальных режимах эксплуатации. Это можно объяснить тем, что, несмотря на постоянство действующей на объект нагрузки, из-за уменьшения рабочего сечения при коррозии напряжения и деформации возрастают, и в определенный момент времени возможно наступление текучести металла, а затем потеря устойчивости пластических деформаций (шейкообразование) по аналогичному механизму при растяжении образца монотонно возрастающей нагрузкой. В условиях локализованной (язвенной, точечной) коррозии коррозионные поражения инициируются в областях с выраженной механохимической неоднородностью свойств. При этом окончательное разрушение происходит в результате сдвига или отрыва. Часто имеет ме-  [c.119]


Таким образом, параметры 5в, бв, /в, С7в характеризуют предельное равномерное напряженно-деформированное состояние образца (до момента образования шейки). Величины v[/k и Sk отражают способность стали к локализованной деформации. Представляется целесообразным щюизводить оценку пластических свойств с использованием отношений  [c.285]

О К до некоторой критической 0n, называемой температурой Нееля. Если при антипараллельной ориентации локализованных магнитных моментов результирующая намагниченность кристалла равна нулю, то имеет место антиферромагнетизм. Если при этом полной компенсации магнитного момента нет, то говорят о ферримагие-тизме. Различные типы магнитного упорядочения иллюстрируются рис. 10.13. Наиболее типичными ферримагнетиками являются ферриты— двойные окислы металлов состава МО-РеаОз, где М — двухвалэнтный металл (Mg=+, Zn +, u +, Ni"+, Fe +, Mn +).  [c.341]

При нагружении твердого тела нагрузками, превосходящими некоторый предел, наряду с упругими деформациями появляются деформации пластические, которые с ростом нагрузок значительно превосходят упругие деформации и предопределяют процесс деформирования тела как локально, так и в целом. Рассмотренные в гл. 12 задачи о предельном состоянии балок с введением понятия пластического шарнира и предельного момента в нем представляют пример того, как вследствие развития и локализации пластических деформаций балка превращается в механизм с пластическим шарниром. Появление локализованного шарнира приводит к особому виду деформирования балки в целом. Рассмотрим деформироиание прямоугольной пластины с образованием мгновенно изменяемой системы Б виде механизма с пластическими шарнирами. При этом предположим, что упругие деформации значительно меньше пластических и при превращении в механизм пластина разбивается на части, в которых материал не  [c.416]

Выявленная последовательность сигналов АЭ отражает известную последовательность процессов деформации и разрушения материала, которые реализуются в вершине распространяющейся усталостной трещины [91, 143, 144]. Они связаны с формированием скосов от пластической деформации у поверхности образца и созданием мезотун-нелей вдоль фронта трещины с последующим разрушением перемычек между ними (см. рис. 3.19). Развитие скосов от пластической деформации происходит преимущественно путем сдвиговой деформации, и раскрытие части фронта трещины в области у поверхности образца определяется модами III + I. Это наиболее простой способ поглощения и релаксации энергии деформации и разрушения. Этот процесс наиболее активен в момент раскрытия и закрытия берегов трещины, поэтому на этих этапах восходящей и нисходящей ветвей нагрузки сигналы от ротаций объемом материала незаметны. Разрушение перемычек между мезотуннелями при регулярном одноосном нагружении также связано р модами III+I, что, в свою рчередь, соответствует локализованным процессам деформации ц разрушения, р которых ротационные эффекты едва заметны.  [c.173]

Разрушение бумажной упаковки начинается с момента достижения паровой фазой, окружающей металлоизделие, точки росы, что сопровождается конденсацией паров воды и увлажнением бумаги в месте ее контакта с металлом. Разрушению подвергаются лишь те увлал ненные места бумаги, которые содержат локализованный ингибитор в виде крупных включений. Именно с растворения ингибитора в воде начинается набухание целлюлозного материала, сопровождающееся разрывом связей между волокнами в листе бумаги и созданием условий для ее последующего разрушения, что происходит при контакте с металлоизделиями, содержащими медь, кобальт, цинк, кадмий, никель и т. д.  [c.153]

Быстрые нейтроны, а-частицы, протоны, осколки деления и т. д. теряют энергию при прохождении через материалы сначала при неупругих столкновениях производят ионизацию, затем при упругих образуют смещения в решетке. Смещение атома в решетке происходит, если энергия, передаваемая при упругом столкновении, больше примерно 25 эв. Хотя большая часть энергии тяжелых заряженных частиц теряется при ионизации, остается достаточно энергии для смещений в решетке. Так как сечение столкновения для заряженных частиц относительна велико, смещения происходят близко одно к другому, нарушая решетку в относительно небольшом объеме. Обычно смещенные атомы в первый момент обладают энергией, достаточной для вторичных смещений, которые в свою очередь могут привести к смещениям третьего и более высоких порядков. Они образуют локализованные области нарушений в кристаллах, называемые пиками. С другой стороны, сечение соударения быстрых нейтронов (высоких энергий) мало и приводит к смещениям, рассеянным, вдоль нути нейтрона в кристаллической решетке. Как и для тяжелых заряженных частиц, в этом случае могут происходить смещения вторичных и более высоких порядков с образованием изолированных областей разу-порядочения. Радиус действия нейтронов много больше радиуса действия тяжелых заряженных частиц, и большая часть их энергии достаточна для образования смещений.  [c.142]

Соединения с коллективизированными 5/-элект-ронами (для них, как правило, d ), в ряде случаев они содержат наряду с актинидами переходные d-металлы. Для этих магнетиков характерна малая по сравнению с рассчитанной в приближении локализованных магн. моментов величина намагниченности насыщения, подавление ферромагнетизма при наложении умеренного всестороннего давления, большая величина коэф. электронной теплоёмкости, отклонения от Кюри — Вейсса закона для парамагн. восприимчивости и т. д. Примеры зонных актинидных магнетиков интерметаллические соединения типа АпМ (где Ап — U, Np, Pu М-иероходнон металл группы железа), UPt, NpRuj, NpOSa и т. д.  [c.40]

Соединения с почти локализованными 5/-элект-ронами. У А. м. такого типа величины магн. моментов в магнитоупорядоченном состоянии близки к теоретически рассчитанным, выполняется закон Кюри — Вейсса для парамагн. восприимчивости, наблюдаются гигантские значения магнитной анизотропии и маг-яитост.рикцаи. Характерными для актинидных ан-тиферромагнстиков являются сложные магнитные  [c.40]


Y у переходных металлов иа порядок величины больше, чем у нормальных [2] d-электроны переходных металлов по своим свойствам занимают промежуточное положение между локализованными и коллективизированными электронами. Оценки энергии связи электронов в кристалле и исследование ферми-поеерхиостей свидетельствуют о значит, степени коллективизации й-электронов. Так, ср. магн. моменты па атом в переходных металлах в сдиница.х — магнетон Бора)  [c.93]

Для магп. металлов группы железа и большйнства их сплавов справедлива скорее картина магнетизма коллективизированных электронов, однако там. где можно говорить о наличии достаточно хорошо определённых локализованных магн. моментов (напр., по-видимому, в a-Fe), взаимодействие между ними подобно РККИ-взаимодействию, т, е. является осциллирующим и дальнодействующим. Это подтверждается прямыми расчётами обменных параметров на основе зонной теории, магнетизма.  [c.469]

Впервые иетривиальпость проблемы сосуществования сверхпроводимости и магнетизма в одном и том же соединении была подчёркнута в 195В В.. Л. Гинзбургом [3], к-рый указал на антагонистический, взаимоисключающий характер ферромагнетизма и сверхпроводимости. Конкуренция этих двух типов упорядочения обусловлена двумя механизмами взаимодействия сверхпроводящих электронов и локализованных магн. моментов.  [c.683]

По магн. свойствам М. с. подразделяются на два технологически важных класса. М. с. класса ферромагнитный переходный металл (Ре, Со, N1, в количестве 75—85%)—н е м е т а л л (В, С, 81, Р— 15—25%) являются магнитно-мягкими материалами с незначительной коэрцитивной силой ввиду отсутствия магн.-кристаллич. анизотропии (наблюдаемая макроскопич, магнитная анизотропия обусловлена ири ненулевой магнитострикции внутр. или внеш. напряжениями, к-рые могут быть снижены при отжиге, а также наведённой анизотропией в расположении пар соседних атомов). Магнитная атомная структура осн. состояния таких систем может быть представлена в виде совокупности параллельно ориентированных локализованных магн. моментов при отсутствии трансляц. периодичности в их пространств, размещении, причём благодаря эффектам локального окружения магн. моменты ионов по своей величине могут флуктуировать (см. Аморфные магнетики). М. С. этого класса имеют почти прямоугольную петлю гистерезиса магнитного с высоким значением индукции насыщения В , что в сочетании с высоким уд. электрич, сопротивлением р ж, следовательно, низкими потерями на вихревые токи делает М. с. по сравнению с электротехн. сталями более предпочтительными при применении, напр., в трансформаторах [6].  [c.108]

Причины возникновения Н. м. с. раз л. типов состоят в конкуренции взаимодействий, стремящихся установить разл, соизмеримые магн. структуры (напр., ферромагнитные и антиферромагнптные). В частности, в металлич. магнетиках это находит своё выражение в спиральных структурах, обусловленных осциллирующим РККИ-обменным взаимодействием В магнетиках с локализованными магн. моментами спиральная магн. структура часто реализуется в результате конкуренции обменных взаимодействий разных знаков между ближайшими и вторыми соседями (т. н. обменная спираль) встречаются и более сложные случаи обменно-релятивистских спиралей.  [c.334]

Схема, иллюстрирующая связь четырёх различных основных механизмов обмена в кристаллах с металлической (её преобладание указано вертикальной стрелкой, направленной вверх) и неметаллической (вертикальная стрелка, направленная вниз) связями для локализованных (горизонтальная стрелка, направленная влево) и нелокализованных (горизонтальная стрелка, направленная вправо) моментов. Кададый тип обмена представлен двумя концентрическими окружностями из них внутренняя окружность (сплошная линия) представляет основную об-  [c.373]

Наиболее полное описание свойств С, ф. в магнетиках дал Т. Мория (Т. Мог)уа). В рамках предложенной им теории С, ф. удалось развить единый подход к описанию свойств магнетиков с локализованными и делокализованными (коллективизированными) носителями нагн. моментов. Теория С. ф. основана на использовании преобразования Стратоновича — Хаббарда для Хаббарда модели, к-рое позволяет заменить систему взаимодействующих спинов на систему невзаимодействующих спинов, находящихся в фиктивных флуктуирующих магн. полях. С помощью такого подхода удаётся построить классификацию магн. веществ по характеру С. ф. в них, В веществах с локализованными ма1 н. моментами С. ф, являются преимущественно поперечными (т. е. локальный. магн. момент может изменяться по направлению при постоянной амплитуде). В слабых зонных магнетиках (см. Зонный магнетизм, Стонера модель), напротив, преобладают продольные С. ф. (т. е. изменяется амплитуда локального момента).  [c.641]


Смотреть страницы где упоминается термин Моменты локализованные : [c.469]    [c.630]    [c.611]    [c.359]    [c.196]    [c.196]    [c.350]    [c.339]    [c.237]    [c.275]    [c.326]    [c.57]    [c.39]    [c.113]    [c.544]    [c.94]    [c.439]    [c.469]    [c.630]    [c.647]    [c.647]    [c.683]    [c.684]    [c.154]    [c.155]    [c.374]   
Теория твёрдого тела (1972) -- [ c.538 , c.557 ]



ПОИСК



Локализованные моменты и минимум электросопротивления

Локализованные моменты критерий локализации

Магнитный момент локализованный

Моменты локализованные образование



© 2025 Mash-xxl.info Реклама на сайте