Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потенциал упругий анизотропной среды

В формулах (1.4.1)-(1.4.4) функция х в обш,ем случае анизотропной среды представляется в виде скалярной функции, зависящей от компонент одного из тензоров деформации, меры деформации или градиента места. В случае изотропной среды упругий потенциал представляется как функция инвариантов соответствующих тензоров. В зависимости от того, какие инварианты и каких тензоров используются в представлении потенциальной энергии, имеют место различные формы закона состояния гиперупругой среды.  [c.21]


Участвующий в представлениях (1.4.1)-(1.4.4)упругий потенциал в общем случае для анизотропных сред представляется в виде скалярной функции (1.4.5), которая зависит от компонент тензора градиента места, тензора меры деформации или тензора деформации Коши-Грина. Для изотропных сред используется представление через инварианты тензора одной из мер деформации или тензора деформации.  [c.28]

Упругий потенциал среды при описании плоских волн может иметь вид (2.22) и для некоторых анизотропных сред. Так будет выглядеть Ф, например, для слоистой среды, если фронт волны параллелен слоям, а слои изотропны. То же верно и для волокнистой среды, если волокна ортогональны фронту. К этому же типу функции Ф относится хорошо изученный в магнитной гидродинамике частный случай волокнистой среды - идеально проводящий сжимаемый газ с вмороженным в него магнитным полем (Куликовский, Любимов [1962]). Подробнее об этом будет сказано в 2.5.  [c.133]

При О фО чисто поперечные ударные волны могут существовать только в таких анизотропных средах, у которых в представлении упругого потенциала разложением (3.1) отсутствует член с коэффициентом 6 (т.е. 6 = 0). В этом случае чисто поперечными будут и волны Римана соответствующего семейства (см. формулу (3.4)). Равенство 6 = 0 является условием существования также чисто продольных ударных волн и волн Римана. Нетрудно заметить, что 6 = 0 соответствует независимости реакции среды на продольную и поперечную деформации.  [c.204]

Рассмотренные выше примеры симметрии упругих свойств являются частными случаями наиболее общего анизотропного упругого тела, характеризуемого 21 упругой постоянной. Самое последнее упрощение можно установить еще следующим образом. Будем считать, что выражение для упругого потенциала инвариантно относительно выбора координатных осей (в этом случае среда называется изотропной). Чтобы получить при этом ограничения на коэффициенты, достаточно повернуть координатную систему, например, около оси г на малый угол со. Новые оси х, у, г будут составлять со старыми осями углы, опреде-  [c.222]

С. Г. Коблика и Л. И. Маневича [1] решена аналогичная задача для трансверсально изотропного полупространства. Доказано, что и в этом случае смешанная краевая задача теории упругости сводится к последовательно решаемым краевым задачам теории потенциала. В монографиях [4, 6], посвященным детальной разработке обсуждаемого метода и его приложениям, рассмотрен также ряд других задач о вдавливании штампов в анизотропные среды (в том числе при отсутствии у системы штампов угловых точек) и о распределении контактных напряжений на границе раздела между анизотропной средой и подкрепляющими ее упругими элементами. Приведем в качестве примеров, иллюстрирующих возможности метода, решения контактных задач при наличии в области контакта зон сцепления и скольжения.  [c.55]


Пуассон (Poisson ) Симеон Дени (П81- ЪА0) — французский математик, механик и физик. Окончил Политехническую школу в Париже (1798 г.). Сформулировал частный случай закона больших чисел и одну из предельных теорем теории вероятностей предложил названное его именем распределение вероятностей случайных величин. Разработал математическую теорию электростатики, обобщил уравнения Навье — Стокса на случай сжимаемой ияэкой жидкости с учетом теплопередачи, обобщил уравнения теории упругости па анизотропные среды, решил ряд задач теории упругости, ввел скобки Пуассона и доказал ряд важных теорем динамики. В теории потенциала изучил носящее его имя уравнение. Доказал устойчивость планетных движений. Написал Курс механики (1811 г.), многократно переиздававшийся.  [c.108]

Рассмотрим полубесконечную пьезоэлектрическую анизотропную среду с нанесенным тонким пьезоэлектрическим слоем толщиной А, ограниченную бесконечной плоскостью с координатой хз = О (ось Хз перпендикулярна ограничивающей плоскости). Для расчета можно использовать ту же методику, что и в разд. 6.1 [106, 170, 183]. Однако в данном случае решение будет более сложным, так как существуют два волновых уравнения (6.12) одно — для подложки (решением этого уравнения являются четыре парциальные волны с постоянными затухания Ь, расположенными в нижней половине комплексной полуплоскости) второе — для слоя (его решение — восемь парциальных волн, поскольку ни одним значением Ь нельзя пренебречь — это связано с конечной толщиной слоя). В свободном пространстве, т. е. при Л з > А, потенциал можно представить выражением (6.6). Решение, полученное в виде двух линейных комбинаций парциальных волн (одна для слоя, вторая для подложки), должно удовлетворять двенадцати граничным условиям, которые можно записать следующим образом не-прерьшность упругих напряжений 7з, при дгз = О и дгз = А непрерывность механических смещений м, при хз = 0 непрерывность электрического смещения >3 при Л з = О и Хз = А и непрерывность потенциала <р при л з = 0. Решение можно получить путем последовательного подбора значений фазовой скорости, стремясь к нулевому значению детерминанта системы уравнений, как и при решении системы (6.15). Скорость зависит ие только от направления распространения, ио и от толщины слоя. Кроме того, заданной толщине могут соответствовать несколько различных решений, т. е. волн, имеющих разную скорость.  [c.281]

Среди приближенных методов решения задач математической физики особую роль играет теория возмуш,ений, позволяющая построить асимптотические разложения при малых и больших значениях тех или иных характерных параметров. Применению такого подхода к контактным задачам теории упругости для изотропной полосы и изотропного слоя был посвящен специальный параграф в монографии [7]. При этом в качестве малых и больших параметров принимались, как правило, относительные геометрические размеры штампа (отношение ширины штампа к ширине полосы (слоя) или обратная величина). Между тем, в случае анизотропного и, в частности, ортотропного материала появляется еще одна возможность. Обычно некоторые жесткости композитов, моделируемых анизотропными однородными средами, отличаются по порядку величины, и, следовательно, их отношения могут рассматриваться как малые параметры. В последние десятилетия был развит асимптотический метод, основанный на построении разложения по таким параметрам. Этот метод отражен, помимо статей [1, 3, 5], в монографиях [4] и [6]. Первое его применение к контактным задачам содержится в статье Л. И. Маневича и А. В. Павленко [5], где рассмотрено вдавливание в упругую ортотропную полосу жестких штампов при наличии сил трения. В этой работе было показано, что использование малого параметра, характеризующего отношение жесткостей ортотропной среды, позволяет свести смешанную краевую задачу плоской теории упругости к последовательно решаемым задачам теории потенциала. Статья С. Г. Коблика и Л. И. Маневича [3] посвящена контактной задаче для ортотропной полосы при наличии области контакта зон сцепления и скольжения. В этой сложной задаче предложенный метод оказался особенно эффективным бьши получены явные аналитические выражения для нормальных и касательных напряжений в обеих областях, а также для заранее неизвестной границы между этими областями. В работе Н. И. Воробьевой,  [c.55]


Таким образом, наряду со случаем волновой изотропии, далее будет рассматриваться упругая среда с малой волновой анизотропией (слабоанизотропная). Для ее описания упругий потенциал Ф будем представлять суммой двух слагаемых, первое из которых имеет вид (2.22), а второе вносит малую поправку на наличие волновой анизотропии. Для указания на малость этого члена будем сопровождать анизотропную поправку малым положительным масштабным множителем д  [c.133]


Методы потенциала в теории упругости (1963) -- [ c.260 ]



ПОИСК



Анизотропная упругая среда

Анизотропная упругость

Анизотропность

Потенциал упругий

Среда анизотропная

Среда упругая

Упругие потенциалы (эластопотенциалы) анизотропной среды

Упругость среды



© 2025 Mash-xxl.info Реклама на сайте