Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нагрузка паровая скорость изменения

Во время работы машинного агрегата угловая скорость его коренного вала может изменяться в результате изменения внешних условий, создающих для него нагрузку, с чем приходится считаться, принимая меры, обеспечивающие устойчивую работу машинного агрегата. Например, нагрузка парового турбогенератора, питающего электрическую сеть, зависит от числа и мощности приемников энергии, чем и определяются величины сил сопротивления, приложенных к турбине.  [c.322]


Интенсивность парообразования в циркуляционном контуре котла находится в прямой зависимости от притока тепла к котловой воде из топки. Быстрота перехода от одного режима работы к другому определяется инерцией топочных устройств, так как требуется вполне определенное время на подвод воздуха и изменение тепловыделения в топке при изменении нагрузки котла. Следовательно, скорости образования и роста пузырьков пара превышают скорости изменения воздействия топочного устройства на паровой котел.  [c.210]

Во время сброса и на-броса нагрузки происходит изменение температуры пара и еще более сильно — температуры металла. На рис, 2-8 это иллюстрируется данными испытаний котла производительностью ПО т/ч. Уровень изменения температуры металла определяется степенью нарушения соотношения между тепловыделением в топке и паровой нагрузкой. Последнее зависит от скорости изменения нагрузки и величины аккумулирующей емкости.  [c.61]

Таким образом, тепловая нагрузка определяется как алгебраическая сумма расхода пара и скорости изменения давления (рис. IV. 5). Если котельный агрегат снабжен регулятором подачи топлива с импульсом по тепловой нагрузке, то внутренние возмущения устраняются этим регулятором воздействием на подачу топлива, причем в результате работы регулятора восстанавливается первоначальная паровая нагрузка котла, так как при стабильном режиме = 0 и = D.  [c.180]

Вопросам циркуляции воды в котлах при нестационарных режимах их работы, особенно блоков котел—турбина, необходимо уделять внимание с тем, чтобы, с одной стороны, обеспечить надежность работы оборудования, ограничив опасные режимы и, с другой — не накладывать неоправданно жестких ограничений на скорости изменения давления и нагрузки котлов. Нестационарные режимы работы паровых котлов можно условно подразделить на следующие сброс и подъем давления при постоянной тепло-  [c.189]

Принимает еще более высокие значения ( 54-6). На рис. 4.3 показаны кривые, устанавливающие зависимость со от нагрузки при различных высотах парового пространства. Здесь наряду со скоростями пара Шо", прп которых получены соответствующие влажности, приведены также значения нагрузки зеркала испарения Rs, т. е. значения расхода пара, отнесенного к 1 м поверхности жидкости (в сечении условной границы раздела фаз). Из рисунка видно, что при одних и тех же нагрузках с увеличением высоты парового пространства влажность пара уменьшается. Это объясняется тем, что с ростом h все большая часть подбрасываемых капель не достигает входных сечений пароотводящих труб и выпадает назад на зеркало испарения. Количество транспортируемых капель при этом практически не изменяется. Поэтому можно ожидать, что после некоторого значения h дальнейшее увеличение ее не приведет к заметному изменению влажности пара. Кривые, построенные в работе [173], подтверждают это (рис. 4.4). Аналогичные зависимости получены также при низких давлениях [28, 121]. Можно считать, что для области, в которой зависимость ю от Wq" может быть выражена степенной функцией с показателем /г З, увеличение высоты парового пространства выше 1,0—1,5 м не приводит к уменьшению влажности пара.  [c.110]


Изменение тепловой нагрузки поверхности нагрева (в 2—4 раза) не влияет на среднюю скорость роста паровых пузырей.  [c.113]

Устойчивый процесс горения твердого топлива в слое мазута и газа возможен при любой нагрузке. Всякое изменение нагрузки котла вызывает перераспределение соотношения теплоты, передаваемой радиационным и конвективным поверхностям нагрева. Увеличение нагрузки и соответственно тепловыделения в топке при неизменных характеристике топлива, воздушном режиме топки и температуре питательной воды снижает долю теплоты, передаваемой экранам в топке, и увеличивает долю теплоты, воспринимаемой конвективным пароперегревателем, экономайзером и воздухоподогревателем. Такое перераспределение тепловосприятия объясняется повышением температуры на выходе из топки и далее по газовому тракту, а также увеличением скорости газов в конвективных поверхностях нагрева. Удельная тепловая нагрузка экранов возрастает незначительно. В результате увеличения температурного напора и скорости газов в конвективных поверхностях нагрева повышаются температура перегрева пара, температура подогрева воды в экономайзере и воздуха в воздухоподогревателе. Повышается и температура уходящих продуктов сгорания, и как следствие этого возрастает потеря с уходящими газами. С ростом нагрузки сопротивления парового, газового и воздушного трактов возрастает примерно пропорционально квадрату увеличения нагрузки.  [c.491]

Очевидно также, что изменение паровой нагрузки конденсатора вызывает не только изменение общей тепловой нагрузки конденсатора, но и процессов теплообмена, скоростей потоков, что в итоге изменяет температуру отсасываемой паровоздушной смеси,  [c.214]

При работе деталей под длительной статической нагрузкой при повышенных температурах (детали паровых и газовых турбин, котлов, химической аппаратуры и др.) важное значение для работы конструкций имеет ползучесть металлов, т. е. изменение размеров вследствие пластической деформации металлов при напряжениях значительно ниже предела текучести. За количественную характеристику ползучести принимается условный предел ползучести, определяемой. как напряжение, при котором скорость и.пи суммарная деформация ползучести за определенный промежуток времени не превосходит допускаемой величины. При практических испытаниях за предел ползучести принимают напряжение, вызывающее 1 % суммарной деформации за 1000 или за 10 000 часов.  [c.15]

Полученные результаты отображают, в известной мере, свойства реальных паровых машин, которые, как известно, обладают весьма небольшим саморегулированием, т. е. значительно изменяют скорость вращения вала при сравнительно небольших изменениях нагрузки или давления пара в паровой магистрали (именно поэтому паровые машины обычно снабжаются регуляторами скорости вращения вала ).  [c.630]

Промежуточные отсечки, кривизна кулисы. Нагрузка на паровоз изменяется в весьма широких пределах он может везти поезд большой массы с наибольшей возможной скоростью, используя всю мощность, которую позволяют ему развить его паровая машина и котел, а иногда требуется, чтобы паровоз следовал без состава, резервом и тогда затрата мощности на собственное перемещение, конечно, будет во много раз меньше. Следовательно, паровая машина паровоза должна обеспечивать изменение развиваемой ею мощности в весьма широких пределах. Очевидно, изменять для этого параметры приготовляемого котлом пара, уменьшая его давление и температуру, нерационально снижение давления и температуры  [c.85]

Другим принципиально отличным примером с точки зрения скорости преобразования тепловой энергии и концентрации тепловых потоков в условиях эксплуатации теплоэнергетического оборудования являются паровые турбины [74, 89]. Динамика теплового состояния паровой турбины в условиях эксплуатации может быть охарактеризована, например, температурой наиболее напряженной зоны корпуса цилиндра высокого давления (ЦВД) (рис. 1.3, в). С учетом теплового состояния и скорости изменения температуры в этой детали эксплуатационные режимы паровой турбины можно разделить на три группы со сравнительно медленным (до 10° С/мин) изменением теплового состояния корпуса при пуске (прогрев трубопроводов, холостой ход, нагружение турбины) и останове (принулите.пьное охлаждение, естественное остывание) с резким (до 15° С/с) изменением температуры при пуске (толчок роторов, прикрытие регулирующих клапанов в процессе нагружения турбины) и останове (аварийный или плановый сброс, увеличение нагрузки, отключение турбогенератора от сети) стационарный (ква-зистационарный) с относительно установившимися значениями параметров пара (при частичных и номинальных нагрузках). При этих режимах температура внутренней стенки (см. рис. 1.3, в) изменяется циклически разогрев до рабочей температуры (около 500°С), выдержка 2...4 ч на стационарном режиме при этой же  [c.9]


Для многочисленной группы машин и машинных агрегатов (сюда относятся различные виды машин-двигателей и исполнительных машин, механизмы которых характеризуются постоянным отношением угловых и линейных скоростей, а следовательно, и постоянством передаточного отношения агрегаты, состоящие из электропривода и рабочих машин в виде грузоподъемных машин, транспортеров, центробежных насосов и вентиляторов, а также гидравлических, паровых и газовых турбогенераторов и т. п.) такое движение свойственно их нормальному рабочему режиму и это движение для них называется установившимся. Поэтому в этом случае нет разницы между движением равновесным и движением установившимся, или движением при нормальном рабочем режиме машины. Только при пуске в ход и остановках, а также при изменении нагрузки и последующем регулировании, эти машины подвергаются действию неуравновешивающихся сил и их движение становится неравновесным, а вместе с тем неустановивщнмся, Оно будет  [c.5]

На протяжении всего XIX в. продолжалось усовершенствование паровой машины. С 1800 г., когда окончилось действие патентов Уатта, конструкторы различных стран особенно активно включились в работу по улучшению технических показателей паросиловых установок с поршневым паровым двигателем. Хотя основные конструктивные детали паровой машины и термодинамические основы ее работы оставались неизменными, произошло качественное изменение паровой техники, выразившееся в повышении показателей интенсивности возросли давление и перегрев пара, число оборотов, удельные тепловые и силовые нагрузки и т. д. Использование перегрева пара, начатое еще в 60-х годах, особенно широко распространилось в 90-х годах. Появление быстроходных технологических машин и двигателей транспортных средств потребовало увеличения КПД паровых машин. Большое внимание постоянно уделялось также системам парораспределения, благодаря чему появились технически совершенные устройства. Этому в значительной мере способствовали разработки американского инженера Джорджа Корлиса. Регулирование в его конструкциях сочеталось с небольшим расходом пара и дало основу для изготовления машин большой мощности. На Филадельфийской выставке 1876 г. экспонировалась балансирная машина Корлиса мощностью 2500 л. с. п скоростью вращения 36 об/мин. Однако парораспределительные краны в его машинах не могли работать при перегретом паре, а балансир — при большом числе оборотов и потому не могли следовать за основной тенденцией развития паротехники последней четверти XIX в. Дальнейшее развитие паровых поршневых двигателей пошло по пути создания многоцилиндровых конструкций с многократным расширением пара это привело к повышению КПД в результате использования высокого перепада давлений и уменьшения теплообмена между паром и стенками рабочих цилиндров. В 90-х годах появились машины с двух-, трех-и четырехкратным расширением пара. Благодаря многим техническим усовершенствованиям к концу XIX в. термический КПД паровых машин возрос в 5 раз [1, с. 13—14]. Паровая машина как универсальный двигатель крупной машинной индустрии, транспорта и в известной степени сельского хозяйства (локомобили) занимала все более прочные позиции вплоть до 70—80-х годов.  [c.47]

Механика малоциклового деформирования и разрушения по мере развития ее базисных направлений становится научной основой расчетов прочности и ресурса машин и конструкций на стадиях проектирования и эксплуатации. Это в первую очередь относится к несуш,им элементам конструкций и деталям машин, испытывающим действие повторных экстремальных тепловых и механических нагрузок. Такие нагрузки возникают при повышении рабочих параметров машин и конструкций — единичной мощности, скоростей, давлений, температур, а также при повышении маневренности, форсировании режимов работы, возникновении аварийных ситуаций при переходе к полупиковым и пиковым режимам эксплуатации. При этом число циклов нагружения на основных расчетных и экстремальных режимах в зависимости от типов и назначения машин и конструкций (атомные реакторы, тепловые энергетические установки, паровые и гидравлические турбины, химические аппараты, технологические и транспортные установки, летательные аппараты и другие объекты новой техники) изменяется от 1 до 10 и более. Температурные режимы (изотермические и неизотермические) таковы, что абсолютные значения максимальных температур несущих элементов достигают 600—1200° С и более, а перепады температур при программном и аварийном изменении режимов достигают 400—500° С со скоростями от 1 до 10 град/ч. Время одного цикла термомехапического нагружения составляет от 10 до 10 с при общем временном ресурсе от 10 до 10 ч.  [c.5]

Регулирование частоты. Допустим, например, что в приемной энергосистеме II (рис. IX. 1) возник дефицит мощности. Регуляторы скорости паровых, газовых и гидравлических турбин распределяют его между отдельными агрегатами приемной системы обратно пропорционально их коэффициентам неравномерности. При этом изменение частоты ограничивается некоторым довольно узким интервалом, определяемым статическими характеристиками регулирования агрегатов [7]. Таким путем отдельные агрегаты участвуют в регулировании частоты в энергосистеме. Их системы регулирования скорости представляют собой системы первичного регулирования частоты. Однако первичное регулирование частоты, обладающее определенным ста-тизмом (неравномерностью энергосистемы), принципиально не может обеспечить постоянного значения частоты при колебаниях нагрузки.  [c.155]

Регулирование скорости производится путем изменения температуры перед газовой турбиной. Регулирование газовой и паровой турбин синхронизировано во избежание неправильной работы перегревателя при больших изменениях нагрузки обеих турбин. Кроме основной системы регулирования скорости, агрегат имеет различные вспомогательные регуляторы для повышения экономичности и предохранительные автоматические регуляторы, обеспечивающие надежную эксплуатацию. Генератор приводится через редуктор и имеет 1600 кеа, 1500 об1мин.  [c.161]


При больших К. п. на каждый котел ставят отдельные вентиляторы и дымосос. Для привода вентиляторов применяются обычно электромоторы с непосредственным соединением. Реже для привода вентиляторов применяются паровые машины и паровые турбины, с обязательным в этих случаях использованием тепла мятого пара на подогрев питательной воды. При электрическом приводе применяются моторы с регулируемой скоростью. Наиболее употребительны асинхронные моторы с переменой числа полюсов и с изменением сопротивления ротора или один из типов коллекторных двигателей. Моторы постоянного тока применяются редко. Хорошие результаты дает привод от двух моторов разной мощности и е переменным числом оборотов. Меньший, более тихоходный мотор работает в пределах нормальной нагрузки котла, переключение 5ке на более мощный и более быстроходный мотор производится только в периоды форсировки К. п. Мощность обоих моторов определяется соответственно потребной производительности вентилятора и требуемого давления. Устраивают централизованное управление вентиляторными моторами при помощи Itнoпoчнoй системы со щита производится пуск моторов в ход, изменение числа оборотов и остановка моторов. Дутьевые вентиляторы устанавливаются обычно ниже пола котельной, иногда же на полу  [c.154]

В 1784 г. Д. Уатт (1736—1819 гг.) создал в Англии паровую машину двустороннего действия, в которой было использовано расширение пара. Пар конденсировался в специальном конденсаторе, обслуживаемом мокровоздушным насосом. В паровой машине Уатта был предусмотрен механизм для превращения возвратно-поступательного движения элементов машины во вращательное и маховик для снижения неравномерности хода. Уатту также принадлежит изобретение центробежного регулятора для уменьшения колебаний скорости вращения вала при изменении нагрузки.  [c.433]

Как мы видели, ротор, подобный показанному на рис. 25, а, приводится во вращение паровой турбиной, совершающей 3000 об/мин, чтобы получить переменный ток со стандартной частотой 50 Гц. Часть роторной системы, показанной на рисунке, представляет собой большой электромагнит с северным и южным полюсами. Электрический ток, питающий этот электромагнит, подводится к ротору через контактные кольца. Ротор вращается внутри статора, представляющего собой стальную конструкцию с установленными в ней электрообмотками. В этих обмотках образуется электрический ток, который затем подается в линию передачи. Нри внезапном изменении электрической нагрузки на статор (как крайний случай,—при короткол замыкании) вращающийся магнит подвергается действию нестационарного крутящего момента. Этот крутящий момент, изменение которого во времени зависит от характера изменения нагрузки, создает внезапное кручение вала, что в свою очередь приводит к крутильным колебаниям турбины относительно ротора. Эти колебания накладываются на движение, обусловленное стационарной рабочей скоростью вращения ротора.  [c.113]

Потребление электрической и тепловой энергий изменяется во времени в течение суток, недели, года. Соответственно суточные, недельные и годовые графики электрической нагрузки неравномерны и поэтому паровые турбины работают как с максимально возможными расходами пара (например, в часы утреннего или вечернего максимумов), так и со значительно уменьшенны.мн (например, в часы ночных минимумов нагрузки). Из-менение расхода пара вызывает изменение его параметров до и после ступени, которые, в свою очередь, приводят к изменению режима ее работы. При этом изменяются теплоперепады, скорости, степени реактивности и кпд стуленей, а также напряжения в деталях турбин.  [c.71]

К первым системам автоматического регулирования по отклонению относятся системы, состоявшие из котла паровой машины и поплавкового регулятора уровня воды, предложенного И. И. Пол-зуновым в 1765 г., а также паровая машина с регулятором скорости Д. Уатта (1784 г.). Поэтому принцип регулирования по отклонению называют также принципом Ползунова — Уатта. В 1829 г. Ж. В. Пон-селе предложил регулятор, действующий от изменения нагрузки на двигатель, а в 1845 г. братья Сименсы изобрели регулятор, реагирующий на угловое ускорение вала двигателя. Такие способы формирования регулирующих воздействий в системах автоматического регулирования стали называться соответственно регулированием по возмущению (принцип Понселе) и по производной от регулируемой величины (принцип Сименсов). В дальнейшем было установлено, что регулирование по производной должно сочетаться с регулированием по отклонению, и практическое применение получили комбинированные системы автоматического регулирования.  [c.18]


Смотреть страницы где упоминается термин Нагрузка паровая скорость изменения : [c.31]    [c.161]    [c.60]    [c.173]    [c.96]    [c.200]    [c.212]    [c.63]    [c.131]    [c.361]    [c.117]   
Тепловые электрические станции (1967) -- [ c.16 ]



ПОИСК



Нагрузка паровая

Скорость Изменение



© 2025 Mash-xxl.info Реклама на сайте