Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэрцитивная сила электрическая

Коэрцитивная сила сегнетоэлектрика (нрк. коэрцитивное поле)-—напряженность электрического или магнитного поля или механическое напряжение, необходимая (ое) для переориентации диэлектрических доменов.  [c.105]

Фермы кривых гистерезиса. Магнитные материалы различают прежде всего по форме гистерезисной кривой. Узкой петлей гистерезиса с небольшой площадью и высокой индукцией насыщения обладают магнитномягкие материалы. Материалы этой группы с округлой петлей применяются для сердечников трансформаторов и электрических машин ППГ — материалы с прямоугольной петлей гистерезиса для элементов памяти. Широкую петлю имеют (рис. 17.3) магнитнотвердые материалы с большой коэрцитивной силой они служат для изготовления постоянных магнитов. В этой главе рассматриваются магнитномягкие металлы и сплавы с округлой петлей гистерезиса.  [c.229]


Для восстановления первоначальных магнитных свойств магнитомягкие материалы подвергают отжигу, который снимает внутренние напряжения и вызывает рекристаллизацию зерен. Магнитные свойства зависят от размера зерна. Поверхностные слои зерен вследствие искажения строения кристаллов характеризуются повышенной коэрцитивной силой. При мелкозернистом строении суммарная поверхность зерен в единице объема больше, чем при крупнозернистом материале, поэтому в материале, состоящем из мелких зерен, влияние поверхностных искажений слоев сказывается сильнее и у него коэрцитивная сила больше. Внутренние напряжения нередко связаны с наличием в материале различных загрязнений, например кислорода в чистом железе, примесей или присадок кобальта, хрома, вольфрама. Используя примеси, усложняющие кристаллическую решетку, вводя технологическую операцию закалки, а иногда добиваясь ориентации структуры доменов в магнитном поле, получают магнитотвердые материалы. При перемагничивании ферромагнетиков в переменных магнитных полях всегда наблюдаются тепловые потери энергии. Они обусловлены потерями на гистерезис и динамическими потерями. Динамические потери вызываются вихревыми токами, индуцированными в массе магнитного материала, а отчасти и так называемым магнитным последействием, или магнитной вязкостью. Потери на вихревые токи зависят от электрического сопротивления ферромагнетика. Чем выше удельное сопротивление ферромагнетика, тем меньше потери на вихревые токи. Магнитное последействие особенно заметно проявляется в магнитомягких материалах в области слабых полей.  [c.272]

Магнитно-жесткие ферриты (железокобальтовые, бариевые и др.), имеющие большую коэрцитивную силу и остаточную намагниченность применяются для изготовления постоянных магнитов. Высокое электрическое сопротивление таких ферритов позволяет применять их в СВЧ технике для подмагничивающих систем.  [c.302]

О неоднозначности магнитных и электрических свойств этих сталей сообщается в работах [13, 26]. Однако максимум в зависимости коэрцитивной силы от температуры отпуска сдвигается в область более высоких температур, что объясняется замедлением процессов, происходяш,их при отпуске сталей, легированных хромом. Возникновение максимумов, вероятно, объясняется коагуляцией карбидов, протекающей в этих сталях при нагреве выше указанных температур. Для контроля качества термической обработки [26] использован мостовой метод контроля по высоте и форме фигур Лиссажу. В работе [27] предложено использовать  [c.81]


Исследования магнитных и электрических свойств этой группы сталей неизвестны, за исключением стали ЗОХРА, изученной в интервале температур отпуска до 280 °С [52]. Результаты показывают возможность контроля качества термической обработки в этом интервале температур по изменениям коэрцитивной силы и остаточной индукции.  [c.86]

После стабилизации механической кривой гистерезиса однофазных металлов образуется в основном негомогенная дислокационная структура, состоящая из областей с низкой и большой плотностью дислокаций. Кроме стабилизации напряжения, при знакопеременной деформации растяжение — сжатие другие физические величины также показывают поведение насыщенности в зависимости от количества циклов, в частности коэрцитивная сила [1], интегральная ширина рентгеновских линий [2] и добавочное электрическое сопротивление [3].  [c.169]

На начальных стадиях возврата, связанных только с перераспределением и аннигиляцией точечных дефектов, частично восстанавливаются электрическое сопротивление, коэрцитивная сила и плотность. Механические свойства практически остаются без изменений.  [c.138]

Однако четвертая стадия — коагуляция дисперсных частиц — всегда связана со снижением прочности наряду с коагуляцией частиц разупрочнение обусловлено потерей когерентности решеток новой фазы и твердого раствора, обеднением твердого раствора растворенным компонентом в процессе выделения. Вследствие этого изменение прочности, а также электрического сопротивления и коэрцитивной силы пересыщенного твердого раствора в процессе его старения характеризуется кривой с максимумом. При достаточно больших интервалах времени прочность снижается до значений, присущих сплаву до старения, и меньших.  [c.12]

Для контроля твердости материалов применяют все основные методы не-разрушающего контроля — акустические, магнитные, электромагнитные и рентгеновские. В основу этих методов положено измерение определенных физических констант модуля упругости, плотности и удельного волнового сопротивления — для акустических методов магнитной проницаемости, коэрцитивной силы и остаточной индукции — для магнитных методов магнитной проницаемости и удельной электрической проводимости — для электромагнитных методов линейного коэффициента ослабления, коэффициента рассеянного излучения и плотности материала — для рентгеновских и гамма-методов. Эти физические константы находятся в функциональной зависимости от твердости материала.  [c.272]

Легированная сталь представляет собой сплавы железа, содержащие от 0,8 до 5 % 81, изготовленные в виде листов и лент толщиной 1 мм и менее. Легирование кремнием резко повышает удельное электрическое сопротивление, снижая потери на вихревые токи, увеличивает магнитную проницаемость, уменьшает коэрцитивную силу и потери на гистерезис. Электротехническую сталь применяют в магнитных цепях электрических машин, аппаратов и приборов, работающих на постоянном и переменном токе (генераторы, трансформаторы всех систем, дроссели, электромагнитные аппараты и приборы, счетчики электроэнергии, реле).  [c.134]

Первое десятилетие XX в. ознаменовалось существенными усовершенствованиями электрических машин. В эти годы развернулись научные исследования физических процессов в электромагнитных механизмах [4]. Качество электрических машин удалось заметно повысить с получением новых ферромагнитных сплавов, идущих на изготовление остова. Например, в Германии были получены сплавы, отличавшиеся большой магнитной проницаемостью и малой коэрцитивной силой, что обеспечивало незначительные потери энергии в железе. Уточненные методы расчета, освоение рациональной технологии обработки деталей и разработка эффективных конструктивных форм также содействовали успеху. Все эти меры вели к уменьшению веса и снижению стоимости двигателей. Особенно сильно подешевели мелкие двигатели. По данным немецкого проф. Кюб-лера, цена двигателя переменного тока мощностью 1 л. с. упала с 450 марок в 1900 г. до 160 марок в 1908 г. Снижение цен прямо зависело от усовершенствования электродвигателей за это же время затрата материалов на изготовление асинхронных двигателей сократилась более чем в два раза. Заметно уменьшился и вес машин постоянного тока со второй половины 80-х годов XIX в. до 1912 г. вес электродвигателей снизился в 3,5 раза [3, с. 85—87].  [c.69]


Намагниченности насыщения ферритов сравнительно не велики. Наибольшим магнитным моментом из всех известных ферритов при комнатной температуре обладают кобальтовый и марганцевый ферриты 4яМ = 5300 и 5000 гс, соответственно. Однако даже эта величина составляет менее одной четверти намагниченности железа. Значительно меньше намагниченность у литиевого (3900) и никелевого (3400 гс) ферритов. Твердые растворы марганцевого и магниевого ферритов характеризуются меньшими намагниченностями, чем марганцевые ферриты, однако, обладают рядом других достоинств. Например, коэффициент прямоугольности некоторых из этих составов ферритов достигает 0,9- 0,95 при сравнительно низкой коэрцитивной силе 0,5-н-1 э. Ферриты с прямоугольной петлей гистерезиса могут применяться в вычислительной технике. Магний-марганцевые ферриты другого состава с малыми потерями в быстропеременных магнитных полях применяются в различных устройствах на сантиметровых волнах. Иттриевые ферриты обладают очень малыми электрическими и магнитными потерями на сверхвысоких частотах и поэтому широко применяются в СВЧ устройствах.  [c.37]

НАПРЯЖЕННОСТЬ поля [гравитационного равна отношению силы, действующей со стороны поля на помещенную в него материальную точку, к массе этой точки магнитного <для однородной и изотропной среды равна отношению магнитной индукции к относительной магнитной проницаемости среды задерживающая (коэрцитивная сила) равна напряженности внешнего магнитного поля, полностью размагничивающего предварительно намагниченный ферромагнетик) электрического — векторная величина, определяемая отношением силы, действующей на неподвижный электрический заряд, помещенный в данную точку поля,  [c.253]

С увеличением содержания углерода в стали снижается плотность, растет электрическое сопротивление и коэрцитивная сила и понижаются теплопроводность, остаточная индукция и магнитная проницаемость.  [c.132]

Электрические свойства. Удельное электрическое сопротивление Pf, максимальная магнитная проницаемость остаточная индукция (намагничивание) Вг и коэрцитивная сила Но чугуна также определяются его составом и структурой.  [c.61]

Электротехническую нелегированную сталь изготовляют в виде горячекатаных листов (толщиной 2,0—3,9 мм), холоднокатаных листов (толщиной 0,5— 3,9 мм, шириной 500—1250 мм) и лент (толщиной 0,1—2,0 мм) по ГОСТ 3836—83, Содержание основных элементов в стали не превышает 0,04 % С, 0,3 % Si 0,3 % Мп остальное железо. Сталь применяют в магнитных цепях электрических аппаратов и приборов. Магнитные свойства стали (табл. 45) определяют на термически обработанных образцах максимальная температура отжига 950 ь, максимальное время охлаждения Д° 600 С, 10 ч. Старение (увеличение коэрцитивной силы образца) стали марок 11832, 21832, 11864, 21864,  [c.544]

При этом металлические стекла имеют характеристики упругости (модули Юнга Е и сдвига G), на 25...30 % более низкие по сравнению со свойствами сплавов в кристаллическом состоянии. Коэффициент теплового расширения части таких материалов близок к нулю. При переходе в аморфное состояние сплавов на основе переходных металлов (железа, кобальта, никеля) значительно снижаются намагниченность и температура Кюри. При комнатной температуре коэрцитивная сила и индукция насыщения магнитомягких металлических стекол несколько ниже, а удельное электрическое сопротивление на два-четыре порядка выше по сравнению с материалами в кристаллическом состоянии, т.е. уровень электромагнитных потерь в аморфных сплавах значительно ниже.  [c.317]

Отпуск и искусственное старение в 2—3 раза повышают такие свойства сплавов, как твердость, прочность, коэрцитивная сила, удельное электрическое сопротивление и др.  [c.136]

Влияние углерода на свойства сталей в основном определяется свойствами цементита закон аддитивности) и связано с изменением содержания основных структурных составляющих — феррита и цементита. Следовательно, при увеличении содержания углерода до 1,2% (рис. 52) возрастают прочность, твердость, порог хладноломкости (0,1% С повышает температуру порога хладноломкости на 20°С), предел текучести, величина электрического сопротивления и коэрцитивная сила. При этом снижаются плотность, теплопроводность, вязкость, пластичность, величины относительных удлинения и сужения, а также величина остаточной индукции.  [c.152]

Магнитотвердые материалы с высокой коэрцитивной силой. Магнитотвердые материалы применяются для изготовления постоянных магнитов электрических машин, электроизмерительных приборов, магнитных муфт и т. д.  [c.118]

Магнитотвердыми называют материалы, обладающие высокими значениями коэрцитивной силы Н . (5-10 ...5-10 А/м), большой остаточной индукцией и, следовательно, высокими значениями магнитной энергии (0,5...200 кДж/м ). Из магнитотвердых материалов изготовляют постоянные магниты, магнитные системы и изделия роторы и статоры электрических машин, магнитные системы для аппаратов, измерительных приборов и т. д.  [c.145]

Кремний почти не увеличивает остаточной индукции и коэрцитивной силы, однако сильно повышает электросопротивление стали. Для магнитных систем электрических машин и аппаратов применяют электротехническую тонколистовую кремнистую сталь с толщиной листа 0,10—0,5 мм.  [c.238]


Удельная электрическая проводимость, магнитная проницаемость, коэрцитивная сила, остаточная индукпдя, твердость, влажность, напряжение, структура, химический состав, предел прочности, предел текучести, относительное удлинение, плотность и другие.  [c.177]

Магнитострнкционные материалы. Основными характеристиками магнитострикционных материалов (см. табл. 27.32), применяющихся для изготовления магнитострикционных преобразователен, являются коэффициент магнитомеханической связи К, квадрат которого равен отношению преобразованной энергии (механической или магнитной) к подводимой (соответственно магнитной или механической), динамическая маг-гщтострикционная постоянная a=(da/dS)s и маг-ьитострикционная постоянная чувствительности Л= ((ЗВ/а)где а — механическое напряжение, Я/м , В — магнитная индукция, Тл, а индексы и Я означают неизменность деформации и магнитного поля. Величина а существенна для работы излучателей, а Л — для работы приемников. Плотность р и модуль Юнга Е определяют резонансную частоту преобразователей от механической прочности, магнитострикции насыщения X и индукции насыщения Вь зависит предельная интенсивность магнитострикционных излучателей механическая добротность Q, удельное электрическое сопротивление р.-,л и коэрцитивная сила Не определяют потери энергии на вихревые токи и гистерезис при работе преобразователя. Значения К, а, Л существенно зависят от напряженности подмагничивающего поля, значение которого Яопт, отвечающее максимуму К, обычно называют оптимальным.  [c.615]

Магнитопластами называют материалы, состоящие из многодоменных магнитных частиц, связанных синтетической смолой. Металлопластические магниты изготовляют путем прессования магнитотвердого порошка в пресс-форме с пропиткой синтетической смолой и переводом смолы в твердое состояние путем полимеризации. Изделия имеют гладкую поверхность, точные размеры и не нуждаются в дополнительной обработке. Для изготовления магнитов преимущественно применяют порошки из альни и альнико. Остаточная индукция и магнитная энергия металлопластических материалов ниже, чем литых и металлокерамических материалов, вследствие влияния заполненных пластмассой немагнитных промежутков между частицами, а коэрцитивная сила такая же. Металлопластические магниты применяют в счетчиках электрической энергии, спидометрах, экспонометрах и других приборах.  [c.237]

Рис, 3.8, Зависимость индукции насыщения, начальной и максимальной магнитных проницаемостей, коэрцитивной силы и удельного электрического сопротивления сплавов FeNi от концентрации никеля  [c.96]

Магннтомягкие материалы, обладая высокой магнитной проницаемостью, небольшой коэрцитивной силой и малыми потерями на гистерезис, используются в качестве сердечников трансформаторов, электромагнитов, в измерительных приборах и в других случаях, где необходимо при наименьшей затрате энергии достигнуть наибольшей индукции. Для уменьшения потерь на вихревые токи а трансформаторах используют магнитомягкие материалы с повышенным удельным электрическим сопротивлением, обычно приме-4ЯЮТСЯ магнитопроБоды, собранные из отдельных изолированных фуг от друга тонких листов.  [c.275]

В низкоуглеродистых (нетермообрабатываемых) сталях увеличение содержания углерода ведет к повышению прочности и понижению пластичности, максимальная магнитная проницаемость падает, коэрцитивная сила и электрическое сопротивление увеличиваются.  [c.108]

Ферриты Бариевые ВаО (РегОз) Коб альтовые СоО-РбгОз Стронциевые 5гО (РегОз)в Тверды. Очень хрупки. Хорошие магнитные свойства за счет высокой коэрцитивной силы. Удельная энергия до 12 кДж/м . Относятся к классу полупроводников Электрические машины, электронные приборы, магнитные системы ламп бегущей волны, магнетронов и другой радиоэлектронной аппаратуры, магнитные линзы исполнительные двигатели, микрогенераторы, поляризованные реле, аппаратура сигнализации магнитные сепараторы, муфты и редукторы  [c.24]

Сплавы с высокой коэрцитивной силой предназначены для изготовления магнитов, работающих в разо.чкнутых цепях с большим коэффициентом размагничивания, а также в цепях, размагничивающее поле которых создается электрическими токами (например, в электрических машинах, магнето и т. п.).  [c.107]

Технически чистым называют железо, содержащее не более 0,04 % С. Оно обладает высокими магнитной проницаемостью и индукцией насыщения и низкой коэрцитивной силой. По причине малого удельного электрического сопротивления технически чистое железо обладает повьпиенными потерями на вихревые токи и находит применение только в устройствах постоянного тока (полюсные наконечники электромагнитов, магнитопроводы реле, полюсные наконечники, сердечники и экранирующие корпуса измерительных приборов магнитоэлектрической и электромагнитной систем). Технически чистое железо является основным компонентом при изготовлении многих магнитных материалов. Промышленностью оно выпускается в виде электролитического железа, железа Армко (кипящая низкоуглеродистая  [c.130]

Х ЭП638 Сплав с высокой индукцией в слабых и средних полях и низкой коэрцитивной силой с коррозионной стойкостью в ряде кислотных и агрессивных сред Для магнитопроводов различных систем управления, якорей и электромагнитов деталей электрических машин без защитных покрытий, работающих в сложных условиях воздействия среды, температуры и давления  [c.188]

Магнитно-мягкими являются ферромагнитные материалы (чистое железо и его сплавы с кремнием, никелем, кобальтом или алюминием, кремнием и алюминием, хромом и алюминием), отличительными чертами которых являются высокая магнитная проницаемость, низкая коэрцитивная сила (Н от десятых долей до 100- 150 А/м), малые потери на вихревые токи при перемагничивании, узкая и высокая петля гистерезиса, сравнительно большое электрическое сопротивление. Такие материалы быстро намагничиваются в магнитном поле, но так же быстро теряют свои магнитные свойства при его снятии. Свойства магнитно-мягких материалов сильно зависят от наличия дефектов, создаваемых загрязнениями, внутренними напряжениями и искажениями кристаллической решетки используемых металлов и сплавов. Примеси серы, фосфора, кремния и марганца, от которых не удается освободить литое железо даже при его вакуумной переплавке, существенно увеличивают потери на гистерезис. Использование высокочистых карбонильных или электролитических порошков железа и особенно его сплавов с никелем или кобальтом позволяет получать магнитные материалы, более точные по составу и с лучшими свойствами. Весьма эффективно производство спеченных магнитов из трудноде-формируемых сплавов например, при прокатке порошков в ленту толщиной до 30 мкм обеспечивается выход годного до 95 %, тогда как в случае получения такой же ленты из литого металла - 40 %.  [c.207]


Сплав вектолит (фирма Дженерал электрик ) получают из окиси железа и окиси кобальта. Он имеет высокое удельное электрическое сопротивление, высокую коэрцитивную силу и низкие потери из-за вихревых токов его применяют в высокочастотных магнитных полях.  [c.303]

Сверхвысокочастотны в ферриты (ферриты СВЧ) характеризуются малыми магнитной кристаллографической анизотропией и коэрцитивной силой, очень высоким удельным электрическим сопротивлением (W—10 Ом-м), Основным параметром СВЧ ферритов является величина ДЯ — ширина кривой феррИ" магнитного резонанса, определяюшаЯ  [c.558]

В низкоуглеродистых сталях кремний, образуя с a-Fe твердый раствор, увеличивает электрическое сопротивление и, следовательно, уменьшает потери на вихревые токи кроме того, кремний повышает магаитную проницаемость, немного снижает коэрцитивную силу и потери на гистерезис вследствие вызываемого им роста зерна, графитизирующего действия и лучшего раскисления сталей. Однако кремний понижает индукцию в сильных магнитных полях и повышает хрупкость, особенно при его содержании  [c.184]

Для изтотовл-ения сердечников и полюсов электромагнитов, для реле, в телефонии используют технически чистое железо, выпускаемое в соответствии с требованиями ГОСТ 3836—47 марок Э, ЭА и ЭАА. Наилучшими свойствами обладает железо марки ЭАА. Все примеси ухудшают качество технически чистого железа как материала для магнитных систем повышают остаточную индукцию и коэрцитивную силу. Особенно сильно ухудшают свойства С, S, Ог и N. Технически чистое железо не пригодно для изготовления магнитных систем электрических машин и аппаратов, так как у него низкое электрическое сопротивление. В связи с этим в нем плохо гасятся вихревые токи.  [c.238]


Смотреть страницы где упоминается термин Коэрцитивная сила электрическая : [c.158]    [c.238]    [c.92]    [c.296]    [c.134]    [c.182]    [c.79]    [c.156]    [c.337]    [c.370]    [c.373]    [c.543]   
Материаловедение Технология конструкционных материалов Изд2 (2006) -- [ c.265 ]



ПОИСК



Коэрцитивная сила



© 2025 Mash-xxl.info Реклама на сайте