Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вольфрам Содержание в стали и влияние

Глубина борирования с увеличением содержания углерода и легирующих элементов в стали снижается, причем наиболее сильно при введении молибдена и вольфрама. Никель, марганец и кобальт мало влияют на глубину слоя. На микротвердость борированного слоя легирующие элементы действуют следующим образом никель ее снижает, а хром, молибден, вольфрам и марганец повышают. Влияние плотности тока и температуры при электролизном борировании на глубину слоя для различных марок стали показано на рис. 74.  [c.128]


Наиболее существенное влияние на полиморфизм железа оказывают хром, вольфрам, ванадий, молибден, ниобий, марганец, никель, медь и другие металлы. Они расширяют или сужают область существования у-железа. Например, введение в сталь никеля, марганца и меди понижает температуру точки и повышает температуру точки А , что (при определенном их содержании) расширяет область у-железа от температуры плавления до комнатной (рис. 5.2, а). Такие сплавы представляют собой твердый раствор легирующего элемента в у-же-лезе и относятся к сталям аустенитного класса.  [c.79]

Установлено, что фосфор, медь, молибден (0,61%), вольфрам (2,7%), ниобий (0,62—1,6%), азот (0,3—0,35%), введенные в сталь раздельно, снижают склонность металла к коррозионному растрескиванию. Меньшие количества азота (0,061%), бора (0,005%) и кремния (0,81%), а также углерода после 1500-[c.630]

Плохо влияют на свариваемость элементы, дающие в стали устойчивые карбиды. Молибден и вольфрам без значительного ухудшения свариваемости вводят в низкоуглеродистую сталь в количествах до 0,5 %. Ванадий и ниобий ухудшают свариваемость при содержании более 0,2 %. Влияние активных карбидообразователей на свариваемость низколегированных, низкоуглеродистых сталей связано с трудностями растворения устойчивых карбидов при нагреве, трудностями гомогенизации аустенита и вследствие этого с образованием в ЗТВ участков с хрупкими неравновесными структурами.  [c.314]

Вольфрам оказывает незначительное влияние на ток пассивации и потенциал пассивации, но заметно снижает ток в пассивном состоянии при содержании его, равном 5—G%, в стали 18% Сг — 8% № [123].  [c.76]

В состав применяемых в настоящее время нержавеющих сталей и сплавов наряду с хромом, алюминием и никелем входят в различном сочетании марганец, кремний, вольфрам, кобальт и другие элементы. Такие стали и сплавы в различной степени чувствительны к термическому воздействию при нагреве, что в значительной мере затрудняет установление технологического режима резки. Это обусловливается следующими свойствами сталей. Теплопроводность, как правило, уменьшается с увеличением степени легирования стали и числа легирующих элементов. С повышением содержания углерода теплопроводность понижается. Аналогичное влияние оказывает кремний и марганец. Особенно сильно снижают теплопроводность хром и никель. Кроме того, в некоторые марки сталей входят два и более легирующих элемента, суммарное действие их сильнее, чем одного из них в таком же количестве. Так, например, теплопроводность аустенитных сталей при 540° колеблется в пределах 0,01984—0,02025 кал/см- сек- град. Значения коэффициента теплопроводности для мартенситных и ферритных нержавеющих сталей колеблется в пределах 0,02187— 0,02284 кал[см сек град, причем эти значения уменьшаются с увеличением содержания хрома от 12 до 26%. С другой стороны, теплопроводность обычной углеродистой стали составляет более 0,0405 кал/см сек град, а теплопроводность низколегированных сталей, содержащих до 5% Сг, немного ниже.  [c.23]


Элементы второй группы (хром, кремний, молибден, ванадий, вольфрам, титан и алюминий) уменьшают устойчивость аустенита и повышают устойчивость феррита. Они снижают критическую точку Л4 и повышают А3. Тем самым они способствуют сокращению аустенитной области. Влияние этих элементов на полиморфные превращения характеризует диаграмма состояния, представленная на рис. 88, б. По оси абсцисс на диаграмме состояния показано содержание элемента, повышающего устойчивость феррита (возрастает слева направо). Если содержание этих элементов в стали превышает определенный процент, то сталь от комнатных температур до линии солидуса будет иметь структуру феррита. Такая сталь называется ферритной.  [c.157]

Следует учитывать также, что целесообразность применения в производстве инструментальных сталей определенных марок должна характеризоваться, помимо режущих свойств, их способностью к восприятию закалки, глубиной прокаливаемости, шлифуемостью, влиянием ковки на структуру стали и пр., а также расходом легирующих элементов на единицу обрабатываемого изделия, так как наличие низкого содержания легирующих элементов в стали (вольфрам, ванадий и др.) может привести не к экономии, а к перерасходу легирующих элементов за счет снижения стойкости инструмента и увеличению брака в процессе изготовления инструмента.  [c.786]

Легирующие элементы изменяют водородопроницаемость и скорость диффузии. Легирующие элементы, такие, как хром или вольфрам, при увеличении их содержания сверх некоторого предела уменьшают скорость диффузии и водородопроницаемость до такой степени, что диффузионные процессы водорода почти полностью затормаживаются, и сталь вследствие этого или частично, или даже полностью теряет флокеночувствительность. Сильное снижение флокеночувствительности или полная ее потеря происходит и в том случае, когда сталь под влиянием легирующих элементов сохраняет после охлаждения более плотную упаковку атомов (аустенитную структуру) и при комнатной температуре.  [c.79]

Влияние хрома на жаростойкость аустенитной стали, содержащей никель и вольфрам, показано на фиг. И, из которой видно, что при содержании в этой  [c.22]

Влияние химического состава. Поверхностное натяжение металла зависит не только от его состава, но и состава контактирующей с ним среды. К поверхностно активным элементам, снижающим поверхностное натяжение сталей, относятся сера, марганец, кремний, углерод, хром, фосфор. Никель, титан, молибден, вольфрам повышают поверхностное натяжение сплавов на основе железа. Количественное влияние отдельных элементов зависит от их содержания и содержания в сплаве других добавок [1, 4]. Поверхностное натяжение металлов обычно определяют в инертном газе — аргоне.  [c.26]

Химические элементы, входящие в состав современных конструкционных материалов, по степени их влияния на обрабатываемость можно условно разделить на три группы [68]. Для сталей на ферритной основе в первую, наиболее сильно влияющую группу, входят углерод и кремний. Сильнее всего изменяет обрабатываемость увеличение содержания углерода до 0,5%. Если применить сфероидизирующий отпуск, обеспечивающий структуру зернистого перлита и предотвращающий образование цементитной сетки, то дальнейшее увеличение содержания углерода на обрабатываемость не влияет. Во вторую группу, оказывающую значительно меньшее влияние на ухудшение обрабатываемости, входят в порядке уменьшения степени влияния хром, вольфрам, ванадий и молибден. В третью группу, практически не влияющую на обрабатываемость, входят марганец и никель. Для сталей и сплавов, имеющих аустенитную и хромоникелевую основу, в первую группу входит углерод, увеличение содержания которого непрерывно ухудшает обрабатываемость, алюминий, титан и кремний во вторую — молибден, кобальт, марганец, хром и вольфрам в третью — никель, ниобий и ванадий.  [c.285]

Такие элементы, как тантал, титан и цирконий, не подвергались коррозии и при более высокой концентрации кислорода. Концентрация металла в жидком сплаве после испытания (вследствие влияния окиси) могла увеличиваться примерно в десять раз. Нержавеющие стали, особенно типа нимоник, довольно стойки при более высокой концентрации кислорода, причем содержание металла в теплоносителе оставалось неизменным. На никель, молибден и вольфрам кислород действует так же, как на титан. С добавлением урана даже при повышенной концентрации кислорода стойкость конструкционных материалов не понижалась. Влияние урана на совместимость свойств натрия с другими металлами заключается в том, что являясь геттером он полностью ликвидирует кислород в теплоносителе. В результате наблюдалось, что любая окись, присутствующая вна-  [c.320]


Влияние легирования на сопротивление термической усталости теплоустойчивых перлитных сталей в области максимальной температуры 550° С в первом приближении похоже на влияние на жаропрочность [2]. Это положение подтверждено экспериментальными данными, показывающими, что лучшие характеристики по числу циклов до разрушения у сталей с повышенным до 0,8% содержанием молибдена и легированных сильными карбидообразующими элементами, такими как ванадий или вольфрам. Однако корреляция между сопротивлением термической усталости и жаропрочностью имеет место далеко не во всех случаях и, кроме того, некоторые экспериментальные данные, свидетельствуют о противоположном.  [c.142]

Влияние элементов и структура. Вольфрам обеспечивает красностойкость быстрорежущей стали. Хром способствует большей прокаливаемости быстрорежущей стали. Ванадий в нормальном количестве способствует стойкости карбидов и повышает производительность режущего инструмента, однако повышение содержания  [c.377]

Подавить отпускную хрупкость II рода можно быстрым охлаждением при отпуске (например, в масле) или дополнительным легированием стали молибденом или вольфрамом в количестве 0,5%. Молибден и вольфрам сдерживают выделение карбидов по границам зерен и обогащение их фосфором. Однако если содержание молибдена и вольфрама больше чем 0,5%, то их благоприятное влияние исчезает, так как они при больших концентрациях образуют собственные карбиды.  [c.129]

Обеспечение жаростойкости сварных соединений. Способность сталей, сплавов и сварных швов противостоять образованию окалины под действием высоких температур определяется их химическим составом и прежде всего содержанием хрома (см. табл. 10-17 и 10-18). При выборе системы легирования металла шва необходимо иметь в виду, что кремний и алюминий также энергично повышают жаростойкость металла, а ванадий и бор ее снижают. Вольфрам и молибден несколько ослабляют способность металла шва сопротивляться окалинообразованию. Марганец в пределах до 4—6% не оказывает заметного влияния на жаростойкость металла шва.  [c.601]

Кремний вводится для повышения предела текучести и сопротивления стали отпуску. Однако в связи с отрицательным влиянием на технологичность при выплавке, разливке и ковке содержание кремния должно быть ограничено [99]. Снижение содержания кремния в стали 9Х2СВФ с 1,4—1,6 до 0,8% способствует повышению технологичности при сохранении высокой теплостойкости [99]. Вольфрам в количестве 0,4—0,6% необходим для повышения прокаливаемости и твердости карбидной фазы. Увеличение концентрации вольфрама до 1,5—2,0% значительно повышает устойчивость против перегрева и отпуска [99].  [c.80]

При дальнейшем нагреве выше критических точек и происходит рост аустенитных зерен. Рост зерна аус-тенита при нагреве стали оказывает большое влияние на результаты термообработки, главным образом закалки. Размер зерна при комнатной температуре, который получен в стали в результате того или иного вида термической обработки, называют действительным зерном. Размер действительного зерна зависит от размера зерна аустенита. Обычно чем крупнее зерно аустенита, тем крупнее действительное зерно. Сталь с крупным действительным зерном имеет пониженный предел прочности, пониженную ударную вязкость и склонность к образованию трещин, поэтому при термообработке всегда стремятся к получению мелкого зерна. По склонности к росту аустенитного зерца при нагреве все стали делят на наследственно мелкозернистые и наследственно крупнозернистые. В наследственно крупнозернистых сталях размер зерна быстро увеличивается даже при небольшом нагреве выше критических точек. В наследственно мелкозернистых сталях при значительном нагреве сохраняется мелкое зерно. На процесс роста зерен в углеродистой стали оказывают влияние температура и продолжительность нагрева, содержание углерода в стали, способы раскисления, применяемые при выплавке стали. Кипящие стали являются, как правило, наследственно крупнозернистыми, а спокойные — наследственно мелкозернистыми. Введение легирующих элементов, за исключением марганца, тормозит рост зерен аустенита при нагревании. Наиболее энергично тормозят рост зерна карбидообразующие элементы титан, ванадий, вольфрам, молибден и хром. Наследственно мелкозернистые стали позволяют использовать расширенный интервал закалочных температур и облегченные условия нагрева стали.  [c.113]

Так, на основании литературных данных и ГОСТ 12348—66 в 1976 г. в отраслевую систему были внесены четыре серии СО высшей точности с аттестованным содержанием марганца в сталях для учета влияния на результаты измерений таких элементов, как хром, вольфрам и кобальт. Впоследствии было показано, что фотометрическая методика определения массового содержания марганца в сталях может использоваться без предварительного отделения мешающих компонентов в диапазоне 0,05 — 15 % Мп и, следовательно, для дифференциальной аттестации содержания марганца в государственных СО для химического и спектрального анализа достаточно одной серии СО вьюшей точности.  [c.97]

Целью легирования инструментальных сталей, принадлежащих к этой группе, в первую очередь является увеличение толщины прокаливаемого слоя, так как твердость обеспечивается большим содержанием углерода в мартенсите. Чем разнообразнее добавки содержит сталь, тем больше диаметр прокаливаемости или расстояние, измеренное от охлаждаемого торца на образце Джомини (рис. 161). Наиболее значительно увеличивает прокаливаемость легирование марганцем, молибденом, хромом и кремнием. С помощью легирования кремнием можно увеличить пределы упругости и текучести. Однако под влиянием добавок кремния растет твердость стали в отожженном состоянии и значительно увеличивается ее склонность к обезуглероживанию. У сталей, легированных, кремнием, температура эвтектоидных превращений выше, чем у нелегированных. Таким образом, для растворения карбидов требуется также большая температура. Сильные карбидообразующие элементы (ванадий, вольфрам, молибден, хром) в небольших количествах растворяются в цементите, уменьшая при этом его растворимость и склонность к коагуляции. Благодаря этому увеличивается устойчивость стали против отпуска и уменьшается чувствительность к образованию крупнозернистой структуры. Однако при наличии легирующих компонентов в количестве более 1—1,5% образуются карбиды уже больших размеров и возникает неоднородность в распределений карбидной фазы главным образом в продольном сечении. Влияние  [c.173]


Как показано в большом количестве работ (см. гл. I, II), таким элементом является молибден, введение которого в сталь в количестве 0,3—0,6 % значительно тормозит развитие отпускной хрупкости. Аналогичное действие оказывает и вольфрам в хромоникелевых и хромомарганцовистых сталях, но оптимальное содержание этого дефицитного элемента еще больше, чем у молибдена, и составляет 1,1-1,6 %, а развитие хрупкости тормозится не столь эффективно как молибденом. Как считают Хондрос и Си [32], маловероятно, что для сплавов на основе железа можно найти другие добавки, снижающие подвижность фосфора, олова и сурьмы и не оказывающие вредного влияния на другие свойства сплавов.  [c.193]

Определим величину которая равняется следующей алгебраической сумме 15/с = 1ё с +18/с —легирующий элемент (Сг, N1, Мп и т, д.). Легирующие элементы, влияющие на активность углерода в аустените, могут быть разделены на две группы 1) повыщающие активность углероданикель, кобальт, кремний 2) снижающие — марганец, молибден, вольфрам, ванадий, ниобий, Можно ожидать, что элементы первой группы будут способствовать развитию межкристаллитной коррозии (их влияние равносильно повышению содержания углерода в стали), а элементы второй группы уменьшат склонность к межкристаллитной коррозии (их влияние равносильно снижению содержания углерода), что в основном подтверждается экспериментальными данными [17],  [c.13]

Влияние химического состава весьма значительно. Фосфор, марганец, кремний, хром, алюминий, ванадий (а также никель и медь в присутствии хрома и марганца) увеличивают склонность стали к обратимой хрупкости. Титан, цирконий, азот (а также никель и медь — в отсутствие других легирующих элементов) не влияют на нее. Молибден и вольфрам уменьшают склонность к обратимой хрупкости. Наиболее сильно влияет на развитие обратимой хрупкости фосфор, даже при небольшом содержании его в стали [116, 120, 109, 117, ПО]. При 1ВЫС01КОМ содержании фосфора (0,1—0,2 /о) сталь, вязкая после закалки и высокого отпуска, становится хрупкой после вылеживания в течение нескольких часов на воздухе. Описанное явление обратимо [118, 119, 109]. Сталь с предельно низким содержанием фосфора и марганца практически нечувствительна к хрупкости [109]. Марганец в количестве выше 0,5% придает углеродистой стали чувствительность к обратимой хрупкости [109], однако содержание этого элемента, вызывающее хрупкость, зависит от содержания фосфора [120, ПО].  [c.704]

Влияние карбидов на свойства легированных сталей. Карбиды являются наиболее важной второй фазой большинства сталей. Содержание углерода в большинстве конструкционных сталей в 10 - 100 раз превышает содержание азота. При N s 0,008 % азот либо связьшается алюминием, образуя нитрид A1N, либо вместе с углеродом образует карбонитри-ды. Карбидообразующими элементами в сталях являются железо, марганец, хром, молибден, вольфрам, ванадий, ниобий, титан, цирконий. Они приведены в порядке возрастания их активности при образовании карбидов. Они являются переходными металлами с незаполненной полностью -электронной оболочкой атомов и поэтому активно взаимо-  [c.27]

Вольфрам. При обычном содержании в специальных сталях вольфрам на процесс резки влияния не оказывает, однако, так же, как и молибден, увеличивает прокаливаемость стали и твердость вблизи разрезанных кромок. Некоторое замедлепне процесса резки наблюдается при содержании вольфрама около 10%.  [c.312]

Существует несколько методов борирования. Исследования [28] показали, что при абразивном износе максимальной износостойкостью обладают слои, полученные при электролизном борировании, несколько меньшей — слои, полученные в расплавах буры с карбидом бора или силикокальцием, и наименьшей (однако очень высокой) —однофазные боридные слои. Такие результаты авторы объясняют тем,.что при трении скольжения износостойкость боридных слоев в основном определяется глубиной борированного слоя и соотношения в нем боридных фаз РеВ и РегВ чем больше относительное содержание в слое фазы РеВ, тем при прочих равных условиях выше его износостойкость. Легирующие элементы, повышающие относительное процентное содержание высокобористой фазы (марганец, хром, молибден, вольфрам), увеличивают износостойкость борированных слоев, а алюминий и медь уменьшают. Однако влияние легирующих элементов незначительно, и легирование сталей с целью повышения износостойкости борированных слоев нецелесообразно.  [c.56]

Алюминий, присаживаемый к никелю и никельхромовым сплавам, повышает сопротивление окислению. Наиболее высокую окалиностойкость имеет сплав (ЭИ652) с 27% Сг и 3% А1 (см. рис. 27). Вольфрам и молибден несколько ухудшают жаростойкость никеля и нихрома, но их отрицательное влияние в этих сплавах значительно меньше, чем в сплавах с железом. Весьма характерной особенностью является то, что при окислении сплавов с высоким содержанием Мо не обнаружено летучей окиси молибдена, как это имеет место у никельхромистых сталей.  [c.222]

Содержание углерода в этих сталях ограничивают обычно <0,1% Во многие стали дополнительно вводят молибден и вольфрам (до 3,5%) с целью повышения длительной прочности Влияние легирующих элементов на время до разрушения сплава на железоникелевой основе типа Х14Н35ВТЮ (ЭИ787) показано на рис 191  [c.321]

Упрочнение при отпуске стали, легированной только ванадием, сопровождается практически полным выделением ванадия из аустенита в составе карбида V . Эффективность влияния карбидов ванадия выше, чем интер-металлидов типа NiAl или Н1з(А1 Ti)2, а-фазы типа Fe— Сг и карбида СггзСе [9]. Легирование стали несколькими элементами, обеспечивающими получение в структуре нескольких карбидных фаз, открывает новые возможности повышения прочности. При одновременном легировании ванадием и вольфрамом наблюдается более интенсивное упрочнение не только после отпуска, но уже и в закаленном состоянии. Механизм влияния вольфрама может быть различным. Так как атомные радиусы ванадия и вольфрама близки, то монокарбид вольфрама (W ) может растворяться в карбиде ванадия (V ), но при дисперсионном твердении, если этот процесс и происходит, то количественно он незначителен [2]. При дисперсионном твердении одновременно протекают два процесса образование участков карбидной фазы, когерентно связанной с аусте-нитом, и обособление карбидов, их коагуляция. При содержании вольфрама до 4% коагулированных карбидов почти нет,— вольфрам, не уменьшая общего количества карбидов V , задерживает их обособление и повышает прочность. При содержании вольфрама 6—8% количество образующихся при отпуске карбидов V уменьшается и прочность падает. При этом увеличивается количество карбидов FesWs , которые не растворяясь в аустените, связывают углерод и уменьшают количество вольфрама, участвующего в дисперсионном твердении. Обеднение аустенита углеродом при отпуске приводит к образованию е-фазы, что в свою очередь вызывает дополнительное упрочнение [2].  [c.296]

Вольфрамомолибденовые стали типа Р6М5 (Р6АМ5), Р8МЗ содержат 5—8% вольфрама и не более 5% молибдена. По влиянию на теплостойкость молибден замещает вольфрам в соотношении примерно Mo W = 1 1,5. С учетом пересчета по приведенному соотношению при условном содержании вольфрама 12—13% обеспечивается благоприятное влияние молибдена на прочность и вязкость без ухудшения теплостойкости. Поэтому стали вольфрамомолибденовой группы имеют повышенные прочностные характеристики, превосходящие по этому показателю практически все остальные быстрорежущие стали (табл. 1). Указанные в таблице марки являются лучшими для изготовления мелкого концевого инструмента (метчики, развертки диаметром менее 1,5 мм), работающего без повышенных температур в зоне резания. Для резания же труднообрабатываемых материалов инструментом больших размеров эти стали практически непригодны, кроме того, введение молибдена ухудшает технологические свойства сталей, 6  [c.6]

Роль карбидообразующих элементов сводится к повышению устойчивости стали при отпуске и к получению в ряде сталей вторичной твердости. В низколегированных сталях основную роль должны играть такие карбидообразующие элементы, которые могут входить в раствор цементита, а в выфколегированных сталях такие, которые вызывают процесс дисперсионного твердения и обусловлен ное им получение вторичной твердости. К числу таких карбидообразующих элементов относятся хром и вольфрам, которые, обогащая цементит, затрудняют диссоциацию карбидов, а следовательно, замедляют процессы диффузии и коагуляции, способствуя сохранению твердости до более высоких температур нагрева. При больших содержаниях хром и вольфрам образуют специальные дисперсные карбиды, вызывая при повышенных температурах отпуска даже возрастание твердости (явление вторичной твердости) В качестве примера на фиг. 118 приведены кривые изменения твер дости при отпуске хромистых сталей с различным содержанием хрома. Наиболее достоверное объяснение вторичной твердости за ключается в образовании специальными карбидами частиц критической степени дисперсности, после того как железные карбиды под влиянием температуры отпуска значительно укрупнились. Максимальный эффект вторичной твердости в вольфрамовых сталях достигается при более высокой температуре, нежели в хромистых сталях, что находится в прямой связи с переходом значительного количества легирующего элемента в карбиды (хром при температуре 400—450°, вольфрам при температуре 550°). Преимущество ле  [c.230]



Смотреть страницы где упоминается термин Вольфрам Содержание в стали и влияние : [c.232]    [c.637]    [c.47]    [c.705]    [c.309]    [c.474]    [c.379]    [c.42]    [c.118]    [c.228]    [c.70]   
Справочник сварщика (1975) -- [ c.0 ]



ПОИСК



Вольфрам

Вольфрам в стали



© 2025 Mash-xxl.info Реклама на сайте