Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энтропия и вероятность состояния

Энтропия и вероятность состояния газа  [c.58]

Представим себе систему, разделенную на две части. Энтропии частей Si и 52 вероятность их состояния и IF2 энтропия и вероятность всей системы S w W.  [c.129]

Предполагая, что между энтропией S и вероятностью W состояния системы существует некоторая функциональная зависимость (принцип Больцмана), и используя общие свойства энтропии и вероятности, установить соотношение Больцмана 5= 1п W.  [c.89]


Лежащая в основе статистической термодинамики зависимость между энтропией и вероятностью впервые была установлена Больцманом, который исходил из представления об энтропии, как меры беспорядка молекулярной системы. Эта зависимость позволила позднейшим исследователям связать энтропию с информацией о механическом состоянии системы и трактовать энтропию как меру отсутствия этой информации, т. е. как меру неопределенности. Возможность такого толкования видна из следующих примеров нулевой энтропии соответствует полная информация о механическом состоянии молекулярной системы, большому значению энтропии отвечает практически исчезающая информация о механическом состоянии этой системы. Тем не менее нельзя не отметить формального характера связи между энтропией и информацией.  [c.155]

Рассмотрим систему, состоящую из двух частей, причем пусть Si ж S2 — энтропии, а и — вероятности состояний этих частей. Из (77) имеем  [c.56]

Таким образом, статистическая причина увеличения энтропии в необратимых процессах состоит в увеличении при этом вероятности состояния системы. Следовательно, энтропия системы есть некоторая функция вероятности ее состояния. Это основное положение, определяющее сущность второго начала термодинамики и устанавливающее связь между энтропией и вероятностью, впервые было высказано Больцманом.  [c.129]

Энтропия и вероятность. Как уже сказано, Больцману удалось установить, что между энтропией вещества в данном состоянии и термодинамической вероятностью этого состояния существует определенная, однозначная зависимость. Остановимся на этом несколько подробнее. Начать нам придется с краткого знакомства с понятиями математической вероятности и термодинамической вероятности состояния.  [c.132]

Применив к исследованию закономерности неупорядоченного движения молекул идеального газа законы статистики, Больцман установил количественную связь между энтропией и вероятностью данного состояния (Р), определяемую уравнением  [c.75]

Процесс кристаллизации расплавленного металла, как и процесс плавления, связан с переходом к состоянию с меньшей свободной энергией. Если считать, что при переходе металла из жидкого состояния в твердое объем его изменяется мало (для большинства металлов среднее изменение плотности составляет 3 %), то справедливо выражение 1/ — Р -г Т8 (V — полная внутренняя энергия системы Р — свободная энергия системы Т8 — связанная энергия системы, здесь Т — абсолютная температура 5 — энтропия — функция вероятности состояния, имеет максимум при равновесии).  [c.30]


Полученное уравнение и есть уравнение Больцмана, связывающее энтропию системы с вероятностью ее состояния. Энтропия S замкнутой системы в равновесном и неравновесном состоянии пропорциональна натуральному логарифму вероятности данного состояния.  [c.130]

Уравнение Больцмана, связывающее энтропию системы и вероятность ее состояния.  [c.136]

Феноменологическая энтропия была введена Клаузиусом для сплошной среды. Больцман дал статистическую интерпретацию энтропии, предполагая среду дискретной. В формулировке Больцмана второй закон термодинамики гласит природа стремится перейти из менее вероятного состояния в более вероятное и термодинамическое равновесие соответствует состоянию с максимумом энтропии.  [c.8]

Как было установлено К. Шенноном, информация / о системе, получаемая при наблюдении за системой, связана с происходящим при этом изменением вероятности состояния системы таким же соотношением (с точностью до знака), как и (3.49). Это формальное сходство выражений для термодинамической энтропии S и уменьшения информации — / ( информационной энтропии по Шеннону) привело многих авторов к необоснованному отождествлению термодинамической энтропии с информационной энтропией , хотя последняя не является термодинамическим параметром. Использование одного и того же термина (энтропия) для различных величин лишь вводит в заблуждение.  [c.73]

Из сопоставления указанных выводов со вторым началом термодинамики видна их эквивалентность. Различие в статистической и феноменологической формулировках второго начала состоит в следующем Статистическая формулировка второго начала утверждает, что в замкнутой системе процессы, сопровождающиеся возрастанием энтропии, являются наиболее вероятными, тогда как феноменологическая формулировка считает такие процессы единственно возможными. Это различие весьма существенно статистическая формулировка второго начала термодинамики не только не отриц.ает, но, напротив, предполагает возможность процессов, в результате которых система переходит из более вероятных состояний в менее вероятные, а энтропия уменьшается, тогда как феноменологическая формулировка полностью исключает возможность подобных процессов.  [c.91]

Статистическое толкование третьего начала термодинамики. Из формулы Больцмана вытекает правильный вывод об обращении энтропии в нуль при Т О, если только учесть особенности поведения молекулярных систем в области абсолютного нуля. Действительно, при Т -> О молекулярная система переходит в свое наинизшее энергетическое состояние, так что вероятность состояния становится равной единице и, следовательно, энтропия обращается в нуль. Другими словами, при Т = О молекулярная система переходит от беспорядка к полному порядку, а так как энтропия есть мера беспорядка, то при Т = О она должна обратиться в нуль.  [c.92]

Так как g > th i S2 — S, > О, т. е. энтропия системы в состоянии равновесия имеет максимальное значение. Таким образом, если изолированная система находится в неравновесном состоянии, то вероятность этого состояния и энтропия системы в этом состоянии не будут иметь максимально возможного значения. Наиболее вероятным процессом изменения состояния в этом случае является процесс, при котором энтропия системы возрастает, г. е. S, — S, > О, Если система находится в состоянии равновесия, то наиболее вероятными будут процессы, при которых энтропия системы не меняется и остается равной максимальному значению.  [c.113]

Статистический характер второго закона термодинамики. С использованием законов статистической физики и теории вероятностей были рассмотрены системы (тела) как совокупность множества беспорядочно движущихся частей и установлена взаимосвязь между энтропией и так называемой термодинамической вероятностью (число микросостояний, реализующих данное макросостояние). Показано, что наибольшее число возможных микросостояний, определяющих данное состояние тела, будет, если молекулы равномерно распределены по всему его объему. В таких случаях принято говорить о максимальной термодинамической вероятности данного состояния и называть его равновесным.  [c.40]


Таким образом, статистический метод показывает, что энтропия является мерой вероятности состояния системы и что выводы о возрастании энтропии применены лишь для систем, состоящих из большого количества частиц.  [c.40]

В случае необратимых процессов конечное состояние адиабатически изолированной системы, как мы убедились в 3-4, отличается от начального состояния большей величиной энтропии. Следовательно, каждое из состояний адиабатически изолированной системы при необратимом процессе неравноценно любому другому состоянию ее последующее состояние является как бы более вероятным, т. е. обладает большей вероятностью, чем предшествующее. При обратимых процессах конечное и начальное состояния соответствуют одному и тому же значению энтропии и являются в указанном смысле равноценными, т. е. равновероятными. С этой точки зрения энтропию системы можно считать мерой термодинамической вероятности данного состояния системы, а само содержание второго начала термодинамики рассматривать как утверждение о существовании меры этой термодинамической вероятности. Развивая эти общие соображения на основе представлений о молекулярной структуре вещества, можно, как это будет ясно из дальнейшего, более глубоко вскрыть физический смысл энтропии.  [c.99]

Сравнивая два состояния, можно сравнивать значения энтропии системы в этих состояниях. При этом, если энтропия состояния А больше чем энтропия состояния В, то изолированная система может перейти в состояние А, но обратный процесс перехода из Л в В невозможен. С внешней стороны здесь возникает сравнение с вероятностью состояние А более вероятно, чем состояние В. Если энтропии состояний равны, то можно считать, что состояния равновероятны, ибо система может обратимым адиабатическим путем переходить как из А в В, так и из В в А. С физической точки зрения каждое макросостояние системы, характеризуемое определенным значением энтропии, образуется некоторым числом микросостояний Р. Если число микросостояний Р, осуществляющих макросостояние А больше числа микросостояний, осуществляющих состояние В, то макросостояние А будет чаще наблюдаться, чем состояние 5, т. е. оно будет более вероятно. Число микросостояний Р, образующих какое-то макросостояние, называется термодинамической вероятностью или статистическим весом. В отличие от математической вероятности, вероятность термодинамическая— целое число, а не дробь. Между энтропией и термодинамической вероятностью существует взаимосвязь, установленная Л. Больцманом в 1877 г.  [c.48]

Статистический метод исследования движения большого числа молекул, составляющих физические системы, привел Больцмана к настоящему истолкованию второго закона термодинамики и выявлению пределов приложимости этого закона. Больцман показал, что процессы с возрастанием энтропии изолированной системы являются наиболее вероятными, но не единственно возможными и что, следовательно, возможны и должны наступить такие процессы, при которых система переходит из более вероятного состояния в менее вероятное, протекающие с уменьшением энтропии. Этим, по Больцману, снимается безусловный характер необратимости и принципа возрастания энтропии.  [c.106]

Увеличение энтропии изолированней системы в необратимых, самопроизвольных процессах и одновременное увеличение термодинамической вероятности состояния системы дают основания полагать, что энтропия и термодинамическая вероятность — величины взаимосвязанные  [c.95]

ГОЙ. Отсюда следует, что мы вправе организовать следующую лотерею представим себе, что мы берем сосуд, содержащий в равном числе белые и черные шары, причем общее число шаров весьма велико, даже по сравнению с числом газовых молекул вынем из этого сосуда столько шаров, сколько молекул у нашего газа направо поместим все белые шары, налево — черные. Результату этой лотереи сопоставим распределение молекул между двумя частями объема в правой части пусть будет столько молекул, сколько вынуто белых шаров, в левой части — столько, сколько вынуто черных. Задачу о распределении белых и черных шаров, а следовательно, и молекул между двумя частями объема, можно теперь решить при помощи исчисления вероятностей. Согласно теории вероятностей, наиболее вероятному случаю соответствует равенство между числами белых и черных шаров, если число испытаний весьма велико и если пренебречь отклонениями, относительная величина которых весьма мала. Этому результату соответствует такое распределение молекул между двумя равными частями объема, что в каждой половине находится приблизительно равное число частиц. В действительности мы считаем возможным утверждать, что это состояние осуществится посредством игры молекулярных движений. Действительное состояние газа, таким образом, то, которому соответствует максимальная вероятность. С другой стороны, термодинамика нас учит, что действительное состояние газа, его равновесное состояние — то, которое обладает максимальной энтропией. Наибольшая вероятность с одной стороны, максимум энтропии с другой — такова связь, которую мы здесь имеем.  [c.19]

Логарифмический характер зависимости между энтропией системы и вероятностью ее состояния можно упрощенным путем установить на примере самопроизвольного распределения молекул газа в объеме при необратимом расширении его в пустоту.  [c.81]

Таким образом, между изменениями энтропии системы и вероятности ее состояния существует связь, выражаемая логарифмической формулой. К этому же выводу приводит более строгое доказательство, известное под названием Я-теоремы Больцмана.  [c.82]

Смысл энтропии как меры вероятности состояния сохраняется и для неравновесных состояний. В этом случае ф-лу (И) следует рассматривать как общее определение энтропии состояния. Ясно, что в природе самопроизвольно (т. е. в замкнутой системе) могут идти лишь процессы, приводящие к увеличению вероятности состояния. Обратные процессы являются крайне маловероятными. [Энтропия системы пропорциональна числу частиц в ней, поэтому статистич. веса двух физически достаточно близких состояний, будучи пропорциональны ехр —S/k), различаются очень сильно.I Это даёт статистич. обоснование закону возрастания энтропии, согласно к-рому энтропия Замкнутой системы может только увеличиваться. В состоянии равновесия энтропия имеет максимально возможное в. данных внеш. условиях значение. Следовательно, равновесное состояние является состоянием с макс, статистич. весом, т. е. наиб, вероятным состоянием.  [c.668]


Наиб, вероятное состояние идеального ферми-газа можно найти из условия максимума статистич. веса (или энтропии) при заданном полном числе частиц Л , и энер-  [c.283]

В правой части последнего соотношения содержится разность первоначальной энтропии системы Л и ее энтропии после того, как стало известным состояние системы сигналов Б. Так как системы Л и В являются связанными, то, в свою очередь, знание состояния системы Л изменит априорную вероятность состояний системы В. Например, если известно, что объект находится в неисправном состоянии, то вероятность поступления тех или иных сигналов также изменится.  [c.132]

Коэффициент I зависит от надежности распознавания и для реальных диагностических процессов должен быть близок единице. Если априорные вероятности состояний системы неизвестны, то всегда можно дать верхнюю оценку энтропии системы  [c.157]

Все самопроизвольные процессы, протекающие от состояний менее вероятных к состояниям более вероятным, необратимы и связаны с увеличением энтропии. Поэтому должна существовать связь между возрастанием энтропии системы и переходом ее от менее вероятного состояния к более вероятному. Максимум энтропии соответствует устойчивому равновесию системы, которое и являться состоянием наиболее вероятным в данных условиях. Отсюда следует, что энтропия S адиабатной системы должна являться функцией вероят1юсти W ее состояния  [c.129]

В термодинамической системе, выведенной нз состояния равновесия и предоставленной самой себе, начинают протекать самопроиз-польные процессы, в результате которых система возвращается в равновесное наиболее вероятное термодинамическое состояние, а энтропия системы увеличивается и достигает своего максимального значения. Уже в этой формулировке второго закона термодинамики видна связь между энтропией и термодинамической вероятностью системы.  [c.60]

В этой же работе Больцман делает расчет вероятностей различных состояний системы и доказывает, что наиболее вероятным состоянием является то, при котором энтропия ее достигает максимума доказывает, что при всяком взаимодействии реальных газов (диффузия, теплопроводность и т. д.) отдельные молекулы вступают во взаимодействие в согласии с законами теории вероят ностей... и заключает <аВторое начало оказывается, таким образом, вероятностным законом . Отсюда следует, что второе начало, будучи статистическим законом, неприменимо к Вселенной, тела которой движутся ке хаотично, а каждое по своим динамическим законам а кроме того, что второе начало может нарушаться тем чаще, чем меньше частиц в системе и чем меньше их скорости.  [c.165]

Из всего сказанного выше напрапшвается отрицательный ответ. Можно убедиться в этом с помощью простого расчета. Обозначим через н соответственно энтропию и термодинамическую вероятность равновесного состояния, а через S в W — энтропию и термодинамическую вероятность состояния, достигаемого в результате флуктуации. Очевидно, можно написать  [c.98]

Основываясь на этих блестящих рез льтатах, можно поставить вопрос нельзя ли найти закон Карно Клаузиуса при помощи молекулярных теорий, понимая, конечно, последние в очень широком смысле, так как общности результата должна каким-либо образом соответствовать общность предпосылок Австрийскому физику Больцману принадлежит честь первого успешного подхода к этой задаче и установления связи между понятием вероятности, определенным образом понимаемой, и термодинамическими функциями, в частности энтропией. Рядом с ним нужно считать одним из основателей этой новой ветви теоретической физики — статистической термодинамики — Уилларда Гиббса. Далее следует упомянуть работы Пуанкаре, Планка и Эйнштейна. Общий результат, который можно считать окончательно установленным, это существование связи между энтропией некоторого состояния и вероятностью этого состояния.  [c.18]

Механизм высокоэластичной деформации [22]. Высокоэластичное состояние является промежуточным физическим состоянием между жидким (текучим) и стеклообразным, поэтому в комплексе механических свойств эластомера можно обнаружить элементы свойств жидкого и стеклообразного тела. В простой жидкости молекулы легко перемещаются тепловым движением. Внешнее силовое поле дает преимущество перемещению в направлении поля, что приводит к возникновению макроскопически наблюдаемого течения жидкости. Развитие высокоэластичной деформации можно рассматривать как течение звеньев или групп звеньев макромолекулы под влиянием внешних сил. С этой точки зрения полимеры (и, в частности, эластомеры) близки к жидкостям. Однако, поскольку все звенья в цепи связаны, а цепи сшиты в пространственную сетчатую структуру, то их течение ограничено связями и не является необратимым. Это соответствует твердому состоянию тела. Таким образом, при высокоэластичном состоянии возможность свободного перемещения имеют только участки цепных макромолекул при отсутствии заметных перемещений макромолекулы в целом. Тепловые движения п эиводят к многочисленным-конформациям этих участков, при которых расстояние между узлами цепей пространственной сетки намного меньше контурной длины участков цепи. Под действием внешней силы цепи изменяют свои конформации, причем проекции участков в направлении деформации удлиняются (или сокращаются). Деформация развивается путем последовательного перемещения сегментов этих участков из одного положения в другое, т. е. протекает во времени [4, 49]. Этим объясняется отставание высокоэластичной деформации от изменения внешней нагрузки. Процесс перегруппировки сегментов сопровождается преодолением внутреннего трения и, следовательно, рассеянием механической энергии. После прекращения действия внешней силы участки цепи под действием теплового движения вновь вернутся в наиболее вероятное состояние сильно свернутых конформаций. По терминологии термодинамики переход в более вероятное состояние системы связан с возрастанием энтропии. Поэтому эластомеры имеют энтропийный характер деформации деформация связана с уменьшением энтропии, а возвращение в начальное положение — с увеличением ее. На основе законов термодинамики разработана статистическая (кинетическая) теория деформации и прочности полимеров, устанавливающая связь механических характеристик с температу-4 51  [c.51]

Не следует, однако, думать, что введенная величина энтропии полностью характеризует неопределенность систем различной физической природы. Она учитывает только вероятности состояний и их число, но не отражает таких существенных свойств, как относительная ценность (важность) состояний, их близость, что у10жет иметь серьезное значение для оценки неопределенности системы. Но во многих задачах, где существенны именно статистические свойства систем, использование энтропии как меры неопределенности вполне оправдано и целесообразно.  [c.119]


Смотреть страницы где упоминается термин Энтропия и вероятность состояния : [c.14]    [c.7]    [c.28]    [c.38]    [c.78]    [c.179]    [c.61]    [c.245]    [c.24]    [c.91]    [c.132]   
Курс термодинамики Издание 2 (1967) -- [ c.130 ]



ПОИСК



Вероятности. Стр Вероятность

Вероятность

Вероятность состояния

Энтропия

Энтропия и вероятность состояния газа

Энтропия состояний



© 2025 Mash-xxl.info Реклама на сайте