Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пружины Свойства механические

В процессе изготовления пружин при навивке, термической обработке и обжатии до соприкосновения витков получаются значительные остаточные деформации. На величину и характер деформаций пружин влияют различные факторы величина допускаемого напряжения, принятая при расчёте пружин, неоднородность механических свойств материала, характер и режим термической обработки пружин и др.  [c.199]


Поверхность и объем 68 Проволока бронзовая пружинная — Марки — Назначение 921 — Свойства механические 919  [c.993]

Механические свойства. Механические свойства рессорно-пружин-ной углеродистой и легированной стали приведены в табл. 65—69.  [c.150]

Лента пружинная холоднокатанная — Механические свойства 153  [c.1054]

Пружинная бронза 867 Пружинная проволока бронзовая — Механические свойства 868 Пружинная сталь — Механические свойства 869, 870  [c.1085]

Метод механических моделей дает возможность достаточно хорошо с качественной стороны имитировать свойства полимерных материалов. Однако дифференциальные уравнения, описывающие поведение механических моделей при воздействии силового поля, в большинстве случаев получаются достаточно сложными, громоздкими, трудно решаемыми. Значительно проще получается, если механическую модель заменить эквивалентной электрической моделью. Аналоги между электрической и механической моделями могут быть разные. Можно, например, считать, что пружина в механической модели соответствует сопротивлению, а поршень — емкости (т] С). Если соединить элементы электрической цепи совершенно так же, как элементы механической модели, то разность потенциалов на концах цепи формально будет соот-  [c.32]

Проволока пружинная — Диаметр — Отклонения допускаемые 20 — Длина для пружин конических и параболоидных 62, 63 — Длина для пружин цилиндрических винтовых 40, 44, 51 --из бронзы — Напряжения допускаемые 33, 34 — Свойства механические 13 — Термическая обработка 18 --из бронзы бериллиевой 7, 10 — Свойства механические 13 — Термическая обработка 18 --стальная углеродистая 11 — Напряжения допускаемые 33, 34 — Свойства механические 12, 13 Продольно-строгальные станки — Поперечины 297, 298  [c.402]

Напряжения допускаемые 33 — Свойства механические 11 — 13 — Состав химический и назначение 8 ---рессорно-пружинная 5, 98 — Свойства механические 7 — Состав химический 6, 8, 9 Станины автоматов холодновысадочных 322, 343, 350, 351, 365  [c.405]

Лента пружинная стальная — Механические свойства 842 Лигнофоль для зубчатых колес  [c.960]

Рис. 12.7. Изменение механических свойств пружинной стали Рис. 12.7. Изменение механических свойств пружинной стали

Химический состав и механические свойства рессорно-пружинных сталей  [c.186]

Для передачи механической энергии за счет сил упругости в период деформации или для поглощения ударных нагрузок, вибраций, возникающих в процессе работы механизмов, применяются пружины. Пружины подразделяются на винтовые и невинтовые. Винтовые пружины выполняются из проволоки круглого сечения, но могут иметь в поперечном сечении прямоугольную форму. Проволока круглого сечения по механическим свойствам подразделяется на проволоку I, П, И1 классов, а по точности изготовления — на проволоку нормальной и повышенной точности — И класса. В графе основной надписи, где указывается материал детали, перечисленные параметры приводятся совместно со ссылкой на соответствующий стандарт. Тип проволоки П1 класса нормальной точности, диаметром 2,0 мм обозначается  [c.124]

Материал колец — сталь 65Г по ГОСТ 1050—74 или другие пружинные стали, обеспечивающие физико-механические свойства не ниже стали 65Г.  [c.203]

Механические свойства стальной углеродистой пружинной проволоки (ГОСТ 9389 -75 )  [c.408]

Бронзы обладают высокими антифрикционными свойствами, хорошим сопротивлением коррозии, а также хорошей обрабатываемостью и литейными свойствами. В связи с этим бронзы широко применяют в подшипниках скольжения, направляющих, червячных и винтовых колесах, гайках винтовых механизмов, для изготовления арматуры и т. п. Бронзы по основному, кроме меди, компоненту делят на оловянистые, свинцовистые, алюминиевые, бериллиевые, кремнистые и др. Их обозначают буквами Бр и условными обозначениями основных компонентов А — алюминий, Б — бериллий, Ж — железо, К —кремний, Мц —марганец, Н — никель, О — олово, С — свинец, Ц — цинк, Ф — фосфор, а также цифрами, выражающими среднее содержание компонентов в процентах. Например, Бр ОФ 10-1 обозначает бронзу с содержанием 10% олова и 1% фосфора. Фосфористую (Бр ОФ 6,5-1,5) и бериллиевую (Бр Б 2,5) бронзы применяют для изготовления трубчатых пружин, мембран, моментных пружин (волосков) и т. д. Механические свойства и области применения других марок бронз приведены в табл. 16.3.  [c.162]

Пружины изготовляют из качественной рессорно-пружинной горячекатаной сортовой стали, механические свойства которой приведены в табл. I. Часто для пружин применяют углеродистые пружинные стали, а также кремнистые стали (ГОСТ 14959—69).  [c.700]

Механические свойства стальной углеродистой пружинной проволоки I—III классов (по ГОСТ 9389 — 60 )  [c.702]

Механические свойства пружинной  [c.703]

Механические свойства стальной термообработанной пружинной ленты  [c.703]

Лента пружинная — Механические свойства 703 Линия нейтральная — Понятие 207-208  [c.756]

Схемы механических систем в положении покоя показаны на рис. 248 — 250. Необходимые сведения об инерционных и упругих свойствах системы, а также ее размеры приведены в табл. 64. Массами пружин и скручиваемых валов пренебречь.  [c.373]

Несмотря на то, что кинетический момент раскрывает дополнительные свойства движения механической системы по сравнению с ее количеством движения, даже совокупность этих динамических характеристик не может описать движения системы, происходящего за счет внутренних сил. Чтобы убедиться в этом, достаточно рассмотреть следующий пример. Пусть два одинаковых тела, соединенных пружиной, покоятся на гладкой горизонтальной поверхности. Растянем пружину и отпустим грузы, не сообщая им начальной скорости. Под действием внутренних сил они начнут совершать прямолинейные колебания, такие, что скорости тел в каждый момент времени равны между собой и противоположно направлены. Общее количество движения системы и ее кинетический момент относительно любой неподвижной точки тождественно равны нулю, хотя система находится в движении таким образом, в данном случае эти две величины никак не характеризуют движения системы. Поэтому в механике рассматривается еще одна мера механического движения, называемая кинетической энергией.  [c.212]


В этом параграфе мы будем рассматривать упругое тело как механическую консервативную систему, т. е. систему, для которой работа внешней силы целиком затрачивается на сообщение кинетической энергии движения тела и накопление полностью обратимой потенциальной энергии. Последнее свойство — способность накапливать потенциальную энергию и возвращать ее в том или ином виде — широко использовалось ранее и, в меньшей степени, используется в настоящее время. Примерами могут служить лук — во времена доисторические и исторические, заводная пружина часов — в наши дни.  [c.63]

Допускаемое напряжение на кручение [т] зависит от механических свойств материала пружины и условий ее работы.  [c.189]

В отдельных случаях,помимо чистой меди.в качестве проводникового материала применяют ее сплавы с небольшим содержанием легирующих примесей 5п, 1, Р, Ве, Сг, М , Са и др. Такие сплавы, называемые бронзами, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь Ор бронз может доходить до 800— 1200 МПа и более. Бронзы широко применяют для изготовления токопроводящих пружин и т. п.  [c.19]

Сплавы меди. В отдельных случаях помимо чистой меди в качестве проводникового материала применяются ее сплавы с оловом, кремнием, фосфором, бериллием, хромом, магнием, кадмием. Такие сплавы, носящие название бронз, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь Ор бронз может быть 800—1200 МПа и более. Бронзы широко применяют для изготовления токопроводящих пружин и т. п. Введение в медь кадмия при сравнительно малом снижении удельной проводимости (см. рис. 7-12) значительно повышает механическую прочность и твердость. Кадмиевую бронзу применяют для контактных проводов и коллекторных пластин особо ответственного назначения. Еще большей механической прочностью обладает бериллиевая бронза (Ор —до 1350 МПа). Сплав меди о цинком — латунь — обладает достаточно высоким относительным удлинением  [c.200]

Механ [57] сообщил, что пружины из стеллита и инконеля X, облученные интегральным потоком I-IO нейтрон 1см при 304° С, не ухудшили своих характеристик. Капп ]24] исследовал влияние облучения на механические свойства инконеля и инконеля X. Он исследовал инконель X, облученный в трех состояниях твердого раствора, отожженном и холоднотянутом (около 35% деформации). Эти материалы облучали при 50, 250 и 300° С интегральными потоками быстрых нейтронов от 3,1-101 до 1 3.10 нейтрон/см . Исследование процессов старения во время облучения проводили на инконеле X, который является стареющим сплавом. При этом обнаружено, что изменения предела текучести вслед-  [c.261]

В соответствии со сказанным все измерения делят на прямые и косвенные. Обычно при этом к прямым относят такие, при которых числовое значение измеряемой величины получается в результате одного наблюдения или отсчета (например, по шкале измерительного прибора). Однако, по существу, в большинстве таких случаев в скрытом виде имеет место также не прямое измерение, а косвенное. Действительно, различные измерительные приборы (вольтметры, амперметры, термометры, манометры и т.д.) дают показания в делениях шкалы, так что мы непосредственно измеряем лишь линейные или угловые отклонения стрелки, указывающие нам значение измеряемой величины через ряд промежуточных соотношений, связывающих отклонение стрелки с измеряемой величиной. Так, например, в магнитоэлектрическом амперметре магнитное поле, определяемое формой и размерами рамки и протекающим по ней током (который и подлежит измерению), взаимодействуя с полем магнита, создает вращающий момент последнему противодействует момент пружины, зависящий от ее механических свойств, и рамка поворачивается на угол, при котором оба момента уравновешиваются. Таким образом, измерение электрической величины — силы тока — через ряд промежуточных звеньев сводится к угловому или линейному измерению ).  [c.18]

Пружинно-рессорные стали (ГОСТ 2052—53) подразделяются на три группы механические свойства приведены в табл. 1.5.  [c.781]

Если упругий элемент (пружину) заменить телом, обладающим идеальной пластичностью (например, пластилиновый столбиком), то после первого же опускания массы и устранения внешней силы движение массы прекратится, поскольку восстанавливающей силы нет. Заметим, однако, что в телах не идеально пластичных, а в упруго-пластичных механические колебания происходят ). С такими колебаниями, в частности, тесно связана проблема малоцикловой усталости. Колебания происходят благодаря наличию у системы упругих свойств и, как следствие, наличию упругих восстанавливающих сил. Величина восстанавливающей силы зависит, при прочих равных условиях, от жесткости упругой системы (пружины) чем жестче пружина, тем при том же смещении массы больше значение восстанавливающей упругой силы. Пример с пружиной, разумеется, был приведен лишь для пояснения сущности явления. Роль пружины в разных случаях играют различные упругие системы.  [c.64]

Приборы для измерения сил резания. Принципиальные кинематические схемы устройства динамометров основаны па одновременном измерении одной или нескольких слагающих силы резания, действующих на режущие элементы инструмента. Работа всех известных динамометров для измерения силы резания основана на упругой деформации их основных рабочих элементов круглых стержней, витых или плоских пружин в механических приборах манометрических трубок в гидравлических приборах металлических мембран, металлических или прессованных уголь ных стержней в различного рола электрических приборах. От пружинящих свойств этих основных рабочих элементов в значительной мере зависит точность показании динамометров. Основным недостатком пружинных и гидравлических динамометров являются относительно бо.пьшие линейное и круговое перемещения инструментов, которые вызываются деформацией пружинящих элементов в этих приборах. Для измерения сил при резании с тонкой стружкой более подходят электрические динамометры. Из электрических динамометров наиболее просты индуктивные датчики и проволочные датчики, наклеиваемые на поверхность пружи нящих элементов прибора. Для нормальной работы электричлских динамометров достаточны упругие деформации рабочих элементов в пределах нескольких микронов.  [c.287]


Приборы для измерения усилий резания. 11ринципиальные кинематические схемы устройства динамометров основаны на одновременном измерении одной или нескольких слагающих усилия резания, действующих на режущие элементы инструмента. Работа всех известных динамометров для измерения усилий резания основана на упругой деформации их основных рабочих элементов круглых стержней, витых или плоских пружин в механических приборах манометрических трубок в гидравлических приборах металлических мембран, металлических или прессованных угольных стержней в различного рода электрических приборах. От пружинящих свойств этих основных рабочих элементов в значительной мере зависит точность показаний динамометров.  [c.617]

Отсюда и следует, что система шарнирно связанных рычагов с массами т=4т, сосредоточенными в серединах, причём шарниры опираются на пружины с (рис. 28), обладает свойствами механического фильтра верхних частот с границами по. хосы пропускания  [c.53]

Для изготовления плоских пружин (пластин) используют стальную пру жинную холоднокатаную термообработанную ленту групп прочности 1П, 2II, ЗП с механическими свойствами по ГОСТ 21996-- 76. В соответствии со стандартом лента имеет ширину oi 3 до 100 мм, толщину от 0,05 до 1,2 мм. Ее изготовляют из стали марок У7А, 65Г, 60С2А, 70С2ХА, 13Х.  [c.283]

Кремнистые бронзы (табл. 28). При легировании меди кремнием (до 3,5 %) повышается прочность, а также пластичность. Никель и марганец улучшают механические и коррозионные свойства кремнистых бронз. Эти броызы легко обрабатываются давлением, резанием и свариваются. Благодаря высоким механическим свойствам, упругости и коррозионной стойкости, их применяют для изготовления пружин и пружинящих деталей приборов и радиоборудования, работающих при температурах до 250 °С, а также в агрег ивных средах (пресная, морская вода).  [c.353]

Стандартизация упругих элементов (пружин, мембран и др.) предусматривает обеспечение взаимозаменяемости как по присоединительным размерам, так и по характеристике, выражаюш,ей зависимость перемещения (деформации) торца пружины или рабочего центра другого элемента от приложенной силы. Оптимальное значение параметров и стабильность характеристики упругих элементов определяются точностью их размеров и формы, механическими свойствами материалов, а также конструктивными и технологическими факторами. Упругие элементы должны иметь мппимальное упругое последействие (т. е. минимальную остаточную обратимую деформацшо, исчезающую в течение некоторого времени после снятия нагрузки) и наименьшую петлю гистерезиса (несовпадение характеристик при нагружении и разгружении, определяемое максимальной разностью между деформациями при нагружении и разгружении упругого элемента). Для определения влияния геометрических, механических и других параметров на работу упругих 76  [c.76]

Для 1 Зготовления винтовых пружин, навиваемых в холодном состоянии, применяются 1) стальная углеродистая проволока диаметром =0,2. .. 12 мм. В зависимости от механических свойств проволока подразделяется на I, II и III класс. Для ответственных пружин применяется проволока 1 класса 2) пружинная проволока из легированных сталей диаметром = 0,5. .. 14 мм. После навивки пружины подвергают термообработке (низкому отпуску).  [c.355]

Тарельчатые пружины сжатия (рис.23) штампуют из листовой стали 60С2А по ГОСТ 14959—69 или из других сталей с такими же механическими свойствами и подвергают соответствующей термообработке (0 = 2° ч- 6° = 2,0 -т- 3,0 и более).  [c.727]

Другим типичным примером механической автоколебательной системы является часовой механизм. Колебания маятника или баланса часов поддерживаются за счет той энергии, которой обладает поднятая гиря Или заведенная пружина часов. Проходя через определенное положение, маятник приводит в действие храповой механизм. При этом маятник получает толчок, пополняющий потери энергии за период. Маятник сам открывает и закрывает доступ энергии из заводного механизма. При нормальном ходе часов энергия, которую получает маятник, как раз равна потере энергии на трение за время между двумя толчками (обычно за полупериод). Поэтому колебания и оказываются стационарными. Если начальное отклонение маятника боЛьше нормального, то потери на трение оказываются больше, чем поступление энергии нз заводного механизма. Колебания затухают до тех пор, пока потери не окажутся равными поступлению энергии. Автоматически устанавливается как раз такая амплитуда колебаний, при которой потери на трение компенсируются поступлением энергии из источника. Следовательно, амплитуда колебаний определяется не величиной начального толчка, а соотноншнием между потерями и поступлением энергии, т. е. свойствами самой колебательной системы. Это уже знакомая нам по предыдущему примеру характерная черта автоколебаний, отличающая их от собственных колебаний (амплитуда которых определяется начальными условиями).  [c.603]

Все выводы предыдущего параграфа справедливы при предположении, что источник внешнего воздействия на систему обладает бесконечно большой мощностью. Только в этом случае можно считать постоянными амплитуду напряжения (генератор напряжения) или амплитуду тока (генератор тока) и не учитывать обратное влияние системы на источник колебательной энергии. Учтем теперь, что реальный источник обладает конечной мощностью, и колебательная система оказывает на него обратное воздействие Рассмотрим механическую систему, эквивалентная схема кото рой представлена на рис. 10.17. Возбуждаемая струна характе ризуется плотностью р, натяжением Т и плотностью сил трения h В центре струны через пружину связи с коэффициентом упру гости k подключен генератор механических колебаний. Генера тор представлен в виде резонатора с массой М, образованного пружиной с коэффициентом упругости k и элементом трения, характеризуемым коэффициентом крез- Автоколебательные свойства резонатора учтены зависимостью йрез от амплитуды колебаний. Эта зависимость приведена на рис. 10.18 (мягкий режим). Величина Ар является амплитудой устойчивых стационарных колебаний генератора в отсутствие связи со струной.  [c.341]

Для изготовления винтовых пружин, которые навиваются в холодном состоянии и не подвергаются закалке, применяется пружинная стальная холоднотянутая углеродистая проволока диаметром от 0,14 до 8 мм. По механическим свойствам проволока подразделяется на три класса. Для иружин ответственного назначения используется проволока I класса марки П-1, В-1 и ОВС.  [c.336]

Материал диафрагмы стандартных тормозных камер должен иметь сопротивление разрыву не менее 160/сГ/сж , относительное удлинение — не менее 500%. Резина должна хорошо сопротивляться старению. Диафрагма должна выдержать до разрушения не менее 400 000 включений. Для диафрагм рекомендуется применять резину на найрите, изготовленную способом формовой вулканизации с двумя тканевыми прокладками. Физико-механические показатели резины должны быть следующими твердость по Шору 55—65, сопротивление на разрыв не менее 100 кГ/сж , относительное удлинение не менее 600%, остаточное удлинение не более 20%, коэффициент старения при 70° (96 ч) 0,6—0,8. Основной причиной старения диафрагмы являются ее перегибы около мест закрепления. Поэтому рекомендуется создавать максимальные закругления крепящих деталей, обеспечивающие отсутствие резких перегибов. По мере увеличения хода штока усилие, передаваемое диафрагмой, уменьшается вследствие затраты энергии на деформацию самой диафрагмы и возвратной пружины 8. Кроме того, с увеличением хода штока сокращается активная площадь диафрагмы, так как при больших ходах часть диафрагмы ложится на корпус. Уменьшение усилия весьма существенно зависит от физико-механических свойств примененной диафрагмы (числа тканевых прослоек). Более эластичная диафрагма быстрее вытягивается, и ее активная площадь уменьшается быстрее, чем у более жесткой диафрагмы. Поэтому усилие, развиваемое тормозной камерой с эластичной диафрагмой, в большей степени зависит от величины хода штока. На фиг. 107 приведены полученные экспериментально зависимости изменения усилий от давления и хода штока в стандартных тормозных камерах различного размера [14].  [c.164]



Смотреть страницы где упоминается термин Пружины Свойства механические : [c.580]    [c.5]    [c.970]    [c.272]    [c.275]    [c.39]    [c.95]    [c.199]   
Детали машин Том 2 (1968) -- [ c.7 , c.11 , c.14 ]



ПОИСК



158 — Механические свойства 153154—Назначение 153, 156, 158 Полосы прокаливаемости 155—157 Предел выносливости 154, 157 —Сортамент 159 — Технологические свойства 155, 157, 159 — Режимы термообработки 155, 157 — Химический состав пружин 151—Динамическая прочность пружин 151 — Испытание пружин на релаксацию 151 — Коэффи

278 — Структура рессорно-пружинная — Закалка—Температура 153 — Механические свойства — Нормы

921 — Свойства механически пружинная — Диаметры Расчет 927 — Длины Расчет 928, 929 — Марки

95 — Режимы стали рессорно-пружинной — Температуры и их влияние на механические свойства

Лента пружинная стальная — Механические свойства

Лента пружинная холоднокатанная Механические свойства

Лента пружинная холоднокатанная стальная нержавеющая — Механические свойства

Лента пружинная — Механические свойства

Механические работающие при повышенных температурах и в условиях коррозии Марки 160—161 — Механические свойства 163—164 — Назначение 160 — Релаксационная стойкость витых цилиндрических пружин 163 — Режимы

Механические свойства рессорно-пружинной стаМеханические свойства инструментальных сталей

Механические свойства рессорно-пружинной стали

Нормы твердости и механические свойства рессорно-пружинной стали

Проволока 244 — Свойства механические пружинная стальная

Проволока из бронзы для пружин — Диаметры 57 — Механические свойства

Проволока пружинная Диаметр из бронзы бериллиевой 7, 10 — Свойства механические 13 — Термическая обработка

Проволока пружинная Диаметр из бронзы — Напряжения допускаемые 33, 34 — Свойства механические 13 — Термическая обработка

Проволока пружинная Диаметр стальная углеродистая 11 — Напряжения допускаемые 33, 34 — Свойства механические

Проволока пружинная Коэфициент бронзовая — Механические свойств

Проволока пружинная из кремнемарганцовой бронзы - Диаметры и механические свойства

Проволока пружинная из кремнемарганцовой бронзы - Диаметры и механические свойства и теоретическая масса 1000 м проволоки 184 - Механические свойства

Проволока пружинная из кремнемарганцовой бронзы - Диаметры и механические свойства и технические требования

Проволока пружинная термически обработанная холоднодеформированная — Материал для изготовления — Отпуск 201 Характеристики механических свойств 199 Прокаливаемое» стали 313 Способы определения

Проволока пружинная термически обработанная — Стали для изготовления2.203 — Характеристики механических свойств

Проволока стальная — Сортамент пружинная — Механические свойства

Проволока стальная — Сортамент холоднотянутая для клапанных пружин— Механические свойства

Пружинная проволока бронзовая — Механические свойства

Пружинная сталь — Механические свойства

Пружины витые Свойства механические и усталостные

Пружины. Механические свойства рессорно-пружинной горячекатаной стали

Рессорно-пружинная Механические свойства

Рессорно-пружинная Механические свойства при отрицательных температурах

Рессорно-пружинная Механические свойства при повышенных температурах

Рессорно-пружинная Механические свойства при различных температурах

Стали пружинные - Требования к механическим свойствам 68 - Классификация

Стали пружинные состав и механические свойства

Сталь Механическая прочность рессорно-пружинная — Механические свойства 613 — Применени

Сталь для пружинная — Механические свойства 869, 870 — Усталостные свойства

Сталь пружинная листовая пружинная углеродистая 5, Н Напряжения допускаемые 33 — Свойства механические 11 — 13 — Состав

Сталь пружинная листовая рессорно-пружинная 5, 98 — Свойства механические 7 — Состав химический

Сталь пружинная термически обработанная Механические свойства

Сталь пружинная — Механические свойства 618, 619 — Усталостные

Стальная лента Механические свойства пружинная термообработанная Размеры



© 2025 Mash-xxl.info Реклама на сайте