Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Когерентное время сигнала

Во многих приложениях необходимо точное и четкое определение времени когерентности . Такое определение может быть основано на понятии комплексной степени когерентности, но возможны разные варианты определения (см. [5.17], гл. 8, где обсуждаются различные возможные способы измерения ширины такой функции, как у(т))- Тем не менее в последующем мы будем чаще всего исходить из одного определения, которое представляется наиболее естественным. Именно, следуя Ман-делю [5.18], мы определим время когерентности хс сигнала и (О как  [c.164]


В целях дальнейшего совершенствования статистического способа обнаружения сигналов от дефектов на фоне структурных помех можно применять синхронное детектирование и когерентное накопление сигналов. При использовании этих методов учитывают фазы приходящих на приемник высокочастотных колебаний, в то время как при рассмотренном выше амплитудном детектировании и некогерентном накоплении учитывают только амплитудные составляющие структурных помех и сигнала от дефекта, При некогерентном накоплении отношение сигнал—помеха увеличивается в У Л/, где N — число суммируемы некоррелированных по шумам эхо-сигналов. При когерентном накоплении это отношение увеличивается в N раз, т. е. оно в N раз больше, чем при некогерентном. Фактически обработка сигналов методом акустической голографии является когерентной обработкой сигналов при этом отношение сигнал — помеха повышается.  [c.297]

В настоящее время статистическая теория передачи информации в оптическом диапазоне, основанная па теории решений, разработана очень слабо. Имеется небольшое число статей, посвященных обнаружению и выделению когерентных световых сигналов. В то же время возможности обнаружения и выделения полезных сигналов в системах оптического диапазона далеко не исчерпываются решениями, предложенными в этих статьях. Поэтому необходимо исследование максимального числа вопросов, связанных с разработкой статистической теории связи в оптическом диапазоне. При этом если для радиодиапазона актуальность статистической теории остро ощущается лишь для систем связи большой дальности, то в оптическом диапазоне, в силу указанных выше причин, уже на небольших дальностях уровень принимаемого сигнала невысок и оптимальная обработка сигнала с целью выделения информации становится необходимой.  [c.10]

В ряде практических ситуаций важно обнаружить и выделить из шумов полезный сигнал, являющийся некогерентным (например, при приеме многомодового излучения лазера, прошедшего турбулентную атмосферу при обнаружении ретранслированного и несущего информацию или отраженного от цели когерентного излучения оптически шероховатой отражающей поверхностью и т. д.). Поскольку некогерентный сигнал и шумовое поле имеют гауссовское распределение амплитуд и описываются гауссовскими весовыми функциями (плотность распределения вероятностей комплексной амплитуды), то и весовая функция, соответствующая суперпозиционному полю также является гауссовской. В частном случае при выделении некогерентного сигнала и медленно флуктуирующих шумов при близких частотах сигнала й шума и медленных флуктуациях сигнала распределение вероятностей потока фотоэлектронов характеризуется законом Бозе—Эйнштейна (10 а) 1 табл. 1.1). Однако в общем случае присутствие шумового поля вызывает изменение распределений при этом спектрально — корреляционные характеристики шумового поля, величина смещения центральной частоты шума относительно центральной частоты сигнала и время наблюдения Т существенно изменяют вид получающихся распределений.  [c.48]


Главной проблемой в коррекции восстановленных изображений является подавление шумов. Для изображений, восстановленных с голограмм, характерен особый и мало изученный вид шума — шум когерентности или спекл-шум, связанный с диффузными свойствами реальных объектов и искажениями голограмм в голографических системах [172]. Некоторые результаты изучения статистических характеристик этого шума при различных искажениях голограмм, полученные путем цифрового моделирования, приведены в гл. 10. Эти результаты, а также аналитическое изучение спекл-шума [147] показывают, что спекл-шум является гораздо более сложным объектом как по своим статистическим характеристикам, так и по взаимодействию с сигналом, чем привычный аддитивный флуктуационный независимый от сигнала шум, который обычно рассматривается в работах по обработке изображений [55, 86, 89]. Поэтому вопрос об оптимальной фильтрации такого шума в настоящее время остается открытым и для фильтрации используются методы оптимальной линейной фильтрации (подробнее  [c.172]

Основным назначением любого канала (системы) связи является получение и воспроизведение информации, и фундаментальным параметром, который наиболее полно характеризует такую систему служит информационная емкость. Независимо от природы системы будь то электрическая, оптическая или электрооптическая система она предназначена для обработки информационного сигнала, кото рый может быть либо полностью детерминированным, либо стати стическим. В детерминированном случае сигнал обычно задается в виде ряда или интеграла Фурье, т. е. он является периодической или затухающей волной, величина которой точно определена для всех значений переменной (время или пространство). С другой стороны, статистические сигналы для любых значений независимой переменной (время или пространство) не принимают определенных значений, а нам известны лишь их вероятности. Анализ и синтез информационного содержания этих статистических сигналов, обычно называемых случайными , проводят статистическими или вероятностными методами. В сущности случайные сигналы в бесконечных пределах не имеют фурье-образов, и приходится обращаться к статистическому анализу. Статистические методы можно применять и к детерминированным сигналам, однако наиболее широкое применение они нашли в анализе случайных процессов. В оптике такие методы используются как основной аппарат в построении классической теории частичной когерентности, при анализе шумов зернистости фотографических материалов и исследовании когерентных оптических шумов, называемых спеклами .  [c.83]

Время когерентности сигнала лазера по порядку величины оказывается меньше времени когерентности ВЧ-генератора с такой же степенью когерентности. Таким образом, существенным параметром оказывается не абсолютный период когерентности, а  [c.372]

Теперь можно оценить, например, время наблюдения, требуемое для определения видности иитерферограммы, формируемой в звездном интерферометре Майкельсона. Чтобы обеспечивалось заданное отношение сигнала к шуму (9.4.23), отношение времени наблюдения к времени когерентности света должно удовлетворять условию  [c.472]

Самым элементарным примером поля с факторизованной функцией является любое классическое поле, для которого точно определены коэффициенты Фурье С, т. е. любое поле, для которого распределение вероятностей Р ( Сд ) сводится к произведению б-функций. В этом случае функция Ш (л ) есть само классическое поле х). Здесь мы впервые замечаем тесную связь, которая существует между когерентностью и отсутствием шумов,— связь, которую мы вскоре обсудим подробнее. Отсутствие случайности или шума в определении коэффициентов Фурье долгое время служило в технике связи критерием когерентности сигнала.  [c.50]

Рассмотрим оптическое излучение, создаваемое обычным некогерентным источником. Такое излучение рассматривается как последовательность независимых элементарных актов испускания атомами фотонов, происходящих в случайные моменты. Предположим, что это излучение испытывает частые случайные изменения фазы. Следовательно, отсутствует какая-либо фазовая корреляция в течение длительных периодов и хотя в данном случае время когерентности Те остается большим по сравнению с оптическим периодом, оно будет малым по сравнению с типичным временем передачи сигнала или временем отклика любого обычного фотодетектора. Таким образом,  [c.391]


Общие сведения. Оптические способы цифровой записи реализованы сравнительно недавно. Они интенсивно развиваются и находят все более широкое распространение в вычислительной технике, точной записи и в быту [7, 8]. В последнее время их стали применять в радиовещании и на телевидении. Общей особенностью оптических способов записи на диске (рис. 1.10) является использование в качестве поля, воздействующего на вращающийся дисковый носитель записи, когерентного электромагнитного излучения лазера, модулированного записываемым сигналом. Сфокусированный луч вызывает остаточные изменения рабочего слоя носителя, образуя дорожку записи. При воспроизведении дорожка освещается сфокусированным лучом лазера непрерывного излучения, и отраженный от дорожки или прошедший сквозь нее луч, приобретая модуляцию, поступает на фотоприемник, где преобразуется в электрический сигнал. Испускаемый луч удается сфокусировать до малых размеров, в результате чего достигается большая поверхностная плотность записи.  [c.14]

Характерная особенность совр. антенной техники — использование А. с обработкой сигнала (цифровой, аналоговой, пространственно-временной, методами когерентной и некогерентной оптики и т. д.). Если излучение принимается А., в к-рой токи от отд. излучателей или участков суммируются в одном тракте, то обработка такого суммарного сигнала связана с потерей информации. В то же время в фазированных антенных решётках можно обрабатывать отдельно каждый принятый элементами или их совокупностью сигнал и затем подвергать пол уч. сигналы дополнит, обработке.  [c.28]

Оптическая диагностика двухфазных сред, бурно развивающаяся в последнее время, использует лазерные доплеровские анемометры по дифференциальной схеме (ЛДА) и лазерные решеточные анемометры (ЛРА). Различие между ними заключается в том, что пространственная решетка — модулятор в первом приборе формируется за счет интерференции двух когерентных лучей лазера в потоке, а во втором — либо проецируется в поток оптической системой, либо создается на фотоприемнике рассеянного света. Отсюда следует, что ЛРА не требует когерентного источника света и поэтому соответствующий прибор более прост по оптической схеме. Однако в связи с тем, что интерференция двух гауссовских пучков когерентного света дает решетку с синусоидальным пространственным распределением освещенности, ЛДА имеет более чистый сигнал с малым содержанием гармоник. В ЛРА обычно используют решетку с пространственным распределением освещенности (пропускания) в виде меандра, но сигнал содер-.жит высшие гармоники, т. е. менее чист . Энергетическая оценка ЛДА и ЛРА показывает, что при равных условиях ЛДА требует в 2 раза менее мощный источник света, так как при интерференции пучков в месте максимальной осве-сЩеиности пространственной решетки волны света складываются, тогда как в ЛРА половина мощности источника пропадает — затеняется пространственной решеткой-модулятором. Сравнительная оценка ЛДА и ЛРА, использующих одну и ту же оптику, проведена в [35, 122].  [c.52]

В К. с. к. р. регистрируют рассеянный сигнал в специально выбранном спектральном диапазоне, свободном от засветок возбуждающего излучения и паразитных некогерентных эффектов типа люминесценции (обычно используется антистоксова спектральная область). Высокая коллимировапность пучка когерентно рассеянного излучения позволяет эффективно выделять полезный сигнал на фоне некогерентных засветок и помех при использовании в качестве источников зондирующего излучения узкополосных стабилизироваи-ных лазеров достигается высокое спектральное разрешение полос КР, определяемое свёрткой спектров источников. Благодаря интерференц. характеру формы спектральной линии с помощью К. с. к. р. удаётся наблюдать интерференцию нелинейных резонансов разной природы (в частности, электронных и колебат. резонансов в молекулярных средах). Исключительно высокая разрешающая способность отд. модификаций К. с. к. р. путём подбора условий интерференции даёт возможность выявлять скрытую внутр. структуру неоднородно уширенных полос рассеяния, образованных наложившимися друг па друга линиями разной симметрии. Многомерность спектров К. с. к. р. обеспечивает значительно более полное, чем в спектроскопия спонтанного КР, изучение оптич. резонансов вещества. В К. с. к. р. разработаны методы получения полных комбинац. снектров за время от 10 с до 10 с.  [c.391]

Рис. 4. Схемы когерентной нелинейной спектроскопии нестационарных процессов а — ДЕухуроваевая система, с которой нестационарно взаимодействует резонансное оптическое попе б — зависимости от времени амплитуды оптического поля в трёх различных схемах нелинейной когерентной спектроскопии вверху — ступенчатое включение резонансного взаимодействия в момент времени , средняя диаграмма — импульсное резонансное воздействие оптического поля на двухуровневую систему (Ч, Ч моменты начала и конца оптического импульса) внизу — резонансное воздействие оптического поля на двухуровневую систему в виде двух последовательных коротких импульсов, разделённых интерва.чом т в — временные диаграммы сигналов нелинейной спектроскопии, соответствующих амплитудам оптического поля на рис. 6 вверху — сигнал оптических нутаций в амплитуде резонансной оптической волны, прошедшей сквозь образец средняя кривая — сигнал затухания свободной поляризации излучения, прошедшего через образец внизу — сигнал оптического эха в виде импульса излучения спустя время Т после воздействия второго импульса. Рис. 4. Схемы когерентной нелинейной спектроскопии <a href="/info/249985">нестационарных процессов</a> а — ДЕухуроваевая система, с которой нестационарно <a href="/info/368110">взаимодействует резонансное</a> оптическое попе б — зависимости от времени амплитуды <a href="/info/237800">оптического поля</a> в трёх различных схемах нелинейной когерентной спектроскопии вверху — ступенчатое включение <a href="/info/368110">резонансного взаимодействия</a> в момент времени , средняя диаграмма — импульсное резонансное воздействие <a href="/info/237800">оптического поля</a> на двухуровневую систему (Ч, Ч <a href="/info/369860">моменты начала</a> и конца оптического импульса) внизу — резонансное воздействие <a href="/info/237800">оптического поля</a> на двухуровневую систему в виде двух последовательных коротких импульсов, разделённых интерва.чом т в — <a href="/info/403667">временные диаграммы</a> сигналов нелинейной спектроскопии, соответствующих амплитудам <a href="/info/237800">оптического поля</a> на рис. 6 вверху — <a href="/info/362861">сигнал оптических</a> нутаций в <a href="/info/201130">амплитуде резонансной</a> оптической волны, прошедшей сквозь образец средняя кривая — <a href="/info/743289">сигнал затухания</a> свободной <a href="/info/364216">поляризации излучения</a>, прошедшего через образец внизу — <a href="/info/362861">сигнал оптического</a> эха в виде импульса излучения спустя время Т после воздействия второго импульса.

Рис. 5. Когерентная активная спектроскопия комбинационного рассеяния а — квантовые переходы б — времевнбй ход процессов нестационарной когерентной спектроскопии комбинационного рассеяния. Сигнал с частотой Шс=<о + (и, — ш,) регистрируется спустя время задержка т (переменное) после во -действия двух импульсов лазерной накачки (частбты ш,, юД (внизу пунктиром показан временной ход амплитуды р когерентных молекулярных колебаний, возбуждённых импульсами Рис. 5. Когерентная активная <a href="/info/38740">спектроскопия комбинационного рассеяния</a> а — <a href="/info/18867">квантовые переходы</a> б — времевнбй ход <a href="/info/249985">процессов нестационарной</a> когерентной <a href="/info/38740">спектроскопии комбинационного рассеяния</a>. Сигнал с частотой Шс=<о + (и, — ш,) регистрируется спустя время задержка т (переменное) после во -действия двух импульсов <a href="/info/144305">лазерной накачки</a> (частбты ш,, юД (внизу пунктиром показан временной ход амплитуды р когерентных <a href="/info/249784">молекулярных колебаний</a>, возбуждённых импульсами
ОКУ) и другие элементы, назначение которых очевидно из их наименований. Штрихованные соединения между блоками соответствуют световым связям блоки, обведенные штриховыми линиями, включаются в зависимости от используемых методов модуляции (внутренней или внешней) и приема (прямое детектирование или супергетеродикное). Особенностями системы являются прежде всего диапазон рабочих длин волн и когерентность излучения. Эти особенности приводят к необходимости создания устройств точного нацеливания антенн передатчика и приемника, так как диаграммы направленности их могут определяться значениями нескольких дуговых секунд (при малых весах и габаритах антенных систем). Случай широкой диаграммы направленности антенны передатчика имеет место, когда сигнал ОКГ является сложным и состоит из большого числа типов колебаний (мод). Однако, даже если лазер передатчика работает на одном типе колебаний, часто необходимо иметь широкий луч, хотя бы для успешного решения задачи нацеливания (перехвата) и слежения за связным ретранслятором 1). В то же время узкие диаграммы направленности позволяют реализовать существенно большие дальности связи, однако и здесь возникают свои проблемы, связанные с обзором больших объемов пространства узкими лучами за короткие интервалы времени, и проблемы стабилизации направления луча. Создание прецизионных быстродействующих устройств нацеливания узких лучей, обеспечение одномодового режима работы ОКГ, разработка точных устройств сопровождения позволят полностью реализовать экстремальные характеристики направленности лазерных систем. В этом случае сечение луча может приблизительно совпадать с поверхностью апертуры приемной системы, поверхностью ретранслятора или цели кроме того, случай полного перекрытия целью сечения луча имеет место при посадке объекта на земную или лунную поверхность.  [c.17]

Учесть шумы при наличии сигнала можно, если иметь в виду, что в случае когерентного света происходит сложение сигнала и шума не по интенсивности, а по амплитуде. Восстанавливаюш,ая волна, проходящая через шумящий записывающий материал, создает, в свою очередь, волну, амплитуда которой слагается из амплитуд сигнала и рассеянного фона. В плоскости изображения в пределах i-ro ее элемента суммарная амплитуда А1= Асг+Аф1, в то время как суммарная интенсивность  [c.74]

В связи с тем, что оптические сигналы, отображающие коррелирующие функции в плоскостях Pia И Pjb, не могут быть отрицательными, знакопеременные коррелирующие функции необходимо записывать с использованием некоторого постоянного уровня смещения. Этот уровень смещения удаляется затем с помощью режекторного фильтра постоянной составляющей, устанавливаемого в частотной плоскости Рз коррелятора. Хотя описываемый коррелятор долгое время использовался с применением записи входных данных на ютопленке в плоскости Pia и синхронизируемой лентопротяжки в плоскости Pjb, однако необходимость в механическом перемещении фотопленки ограничивает быстродействие и точность данного коррелятора. Поскольку этот коррелятор в основном является системой формирования изображения, требования к точности установки его элементов, а также требования к степени когерентности используемого излучения существенно ниже, чем в корреляторе с частотной плоскостью. Схема описанного коррелятора представляет большой интерес, поскольку в нем для управления с высокой точностью перемещением одного сигнала относительно другого можно применять акустооптические ячейки (что с успехом и применялось в плоскости Pi ). В следующем разделе мы обсудим этот и другие типы акустооптических корреляторов. Акустооптические корреляторы имеют такие преимущества, как быстродействие и широкая полоса пропускания, но их можно использовать лишь для обработки одномерных сигналов.  [c.573]

Особенно быстрые релаксационные процессы наблюдаются также при колебательных переходах в конденсированной фазе. Методы измерения времен продольной и поперечной релаксации Тит колебательных переходов в жидкостях и твердых телах были впервые разработаны Кайзером, Лоберо и сотр. [9.32, 9.45, 9.46], а также Альфано и Шапиро [9.47]. Подходящими для этого оказались различные процессы комбинационного рассеяния. Так, для измерения времени релаксации энергии Т образец возбуждался коротким одиночным импульсом с частотой вынужденного комбинационного рассеяния формировался стоксов импульс с частотой (os=(Ol—ojm и молекулы из основного колебательного состояния переводились в первое возбужденное колебательное состояние с энергией Й(Ом- Для регистрации наличия возбужденных молекул использовался слабый световой импульс с частотой 2 ыь- Наряду с другими процессами этот импульс вызывал в образце спонтанное некогерентное комбинационное рассеяние. Регистрируется вызванное возбужденными молекулами антистоксово рассеяние на частоте 0а = 2 , + (омИнтенсивность этого излучения пропорциональна населенности возбужденного колебательного уровня. Время Т может быть определено по зависимости спада интенсивности антистоксова сигнала от времени задержки между обоими импульсами (рис. 9.17). Аналогичным образом может быть измерено и время т. При этом используется то, что процесс вынужденного комбинационного рассеяния сопровождается не только изменением населенностей, но одновременно образованием интенсивной волны поляризуемости с частотой (Ом и волновым вектором —kg. Формирование этой когерентной волны протекает аналогично тому, как это имеет место при однофотонных явлениях, описанных в п. 9.1.2. После прохода световых импульсов волна поляризуемости распадается с временем релаксации фазы т. Эта релаксация может быть зарегистрирована при помощи когерентного антистоксова  [c.347]

Оптические вычисления, под которыми подразумевают выполняемые оптическими методами операции с дискретными числовыми данными, являются новинкой в долгой истории развития оптической обработки сигналов. Утверждения о том, что оптические методы могут успешно конкурировать и теоретически превзойти по своим возможностям электронные методы обработки данных, впервые привлекли серьезное внимание в середине 1970-х гг. [I, 2], а в последнее время в этом направлении возник настоящий шквал публикаций. Сначала может показаться, что электромагнитные поля оптического диапазона непригодны для реализации цифровой логики, так как они распространяются линейным и непрерывным образом, в то время как поток электронов в цепи может быть просто преобразован в дискретные двоичные уровни. Одпако имеются три свойства оптики, которые делают ее привлекательной для цифровых вычислений. Первое — это широкая полоса частот оптических источников, которая может для полупроводниковых лазеров достигать гигагерц. Второе — это широкая полоса пространственных частот. Двумерная оптическая система может иметь крайне большое число элементов, разрешающих изображение, каждый из которых можно рассматривать как отдельный канал связи, а все они параллельно передают сигнал в одной и той же системе. В случае пекогерентного освещения все разрешающие ячейки оптической системы являются взаимно независимыми. При освещении когерентным светом каналы являются связанными между собой, что приводит к исключительно высокой степени организации межэлементных соединений. Третьей, относящейся к оптическим соединениям, характеристикой является отсутствие интерференции при распространении сигналов, что иногда описывают как возможность пересечения оптических проводов . Два оптических поля могут распространяться друг через друга, не оказывая взаимного влияния. Эти  [c.182]


На рис. 4.20 показана интенсивность когерентного стоксова рассеяния /с как функция времени задержки Гз в смеси ССЦ СбН12 на колебательной моде ССЦ (12/2яс = 459 см ). Длительность импульсов накачки была Тр = 5,2 ПС. Экспоненциальное затухание сигнала при Гз > 10 пс целиком определяется релаксацией резонансного отклика и позволяет найти его время дефазировки. Поскольку время релаксации нерезонансной части  [c.255]

Нри выводе (10.59) усреднение мгновенных значений мы провели по всем временам. Подобный сигнал получают с приемника, время отклика которого велико по сравнению и со средним периодом излучения и со временем его когерентности. Если постоянная времени приемника мала по сравнению с этими временами, то В08МОЖИО наблюдение переходных интерференционных эффектов ( 6).  [c.288]

Направлением дальнейшего усовершенствования статистического способа обнаружения сигналов от дефектов на фоне структурных помех должно явиться синхронное детектирование и когерентное накопление сигналов. Эти методы учитывают фазы приходящих на приемник высокочастотных колебаний, в то время как при рассмотренном выше амплитудном детектировании и некогерентном накоплении учитывают только амплитудные составляющие сигнала дефекта и структурных помех. При некогерентном накоплении выигрыш в увеличении отношения сигнал — помеха равен УМ, где N — число суммируемых некоррелированных по шумам эхо-сигналов. При когереетном накоплении выигрыш  [c.172]

Спектры скоростей отличаются от сканирования не только другим способом визуализации результатов анализа, но прежде всего тем, что для них характерна частичная математическая формализация процедуры выделения когерентных сигналов на фоне помех, которая облегчает оценку скоростей. В простейших случаях оценку скоростей доверяют машине. Наиболее широко в качестве меры когерентности применяют оператор отношения сигнал/помеха р( , V) или другой оператор — оценки подобия сигналов (сембланс). При расчете вертикальных спектров текущее время перебора изменяется дискретно с заданным шагом, после чего получают вертикальное сечение двухмерного в плоскости временного разреза поля скоростей для заданного пикета на временном разрезе. Обычно шаг между такими сечениями по профилю не превышает 1 км и не менее 1/2 км.  [c.67]

Отождествление когерентности и монохроматичости оправдано лишь в простейших, с современной точки зрения, приложениях. Монохроматичность источника света ограничивается прежде всего тем тривиальным обстоятельством, что строго монохроматический свет представляется бесконечной во времени плоской волной. В действительности свет излучается источником и поглощается регистрирующим прибором за некоторое конечное время. Если излучение световое, то это время определяется временем жизни возбужденного атома, если это радиоволны — то продолжительностью сигнала. В обоих случаях излучение не может быть строго монохроматическим, а должно иметь спектр частот шириной порядка 1/т, где т — время излучения.  [c.128]


Смотреть страницы где упоминается термин Когерентное время сигнала : [c.509]    [c.92]    [c.236]    [c.198]    [c.504]    [c.373]    [c.448]    [c.473]    [c.172]    [c.92]    [c.147]    [c.632]   
Введение в нелинейную оптику Часть2 Квантофизическое рассмотрение (1979) -- [ c.69 ]



ПОИСК



Время сигнала

Когерентная (-ое)

Когерентность

Когерентность время

Сигнал



© 2025 Mash-xxl.info Реклама на сайте