Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поляризованный свет для измерения

Поляризованный свет для измерения напряжений 139, 238, 401.  [c.449]

Как уже отмечалось, если в системе, изображенной на рис. 18.4, убрать поляризатор П] и направить па пластинку естественный свет, то интерференционной картины не будет. Если же на пластинку направить частично поляризованный свет, то через анализатор ГК будет наблюдаться интерференционная картина, хотя и не такая контрастная, как при падении линейно поляризованного света. Таким образом, сочетание кристаллической пластинки и анализатора представляет собой устройство, позволяющее при появлении интерференционной картины обнаруживать частичную поляризацию в падающем свете. Такие устройства называются полярископами. Чувствительность полярископа зависит в первую очередь от конструкции и ориентации кристаллической пластинки (вместо одной пластинки можно применять систему пластинок). Наиболее известен полярископ Савара, в котором используются две кварцевые пластинки равной толщины, вырезанные под углом 45° к оптической оси и сложенные так, чтобы их оси были в скрещенном положении (рис. 18.8). При достаточной яркости исследуемого света с помощью полярископа Савара можно обнаружить степень поляризации порядка 1—2 %. Очевидно, что полярископом можно только обнаружить поляризацию, а для ее количественного измерения необходимо специально проградуированное компенсирующее устройство (например, стопа стеклянных пластинок, по-  [c.60]


Этот метод основывается на открытии Дэвида Брюстера ) когда через кусок стекла, в котором имеются напряжения, пропускается поляризованный свет, то эти напряжения вызывают яркую цветную картину. Брюстер высказал предположение, что эти цветные картины можно использовать для измерения напряжений в инженерных конструкциях, таких, как каменные мосты, исследуя их стеклянные модели в поляризованном свете при различных условиях нагружения. Это предположение не привлекло внимания инженеров того времени. Лишь впоследствии физиком Максвеллом были проведены сравнения ) фотоупругих цветных картин с аналитическими решениями, Много иоз ке упомянутым предположением воспользовались Вильсон при исследовании напряжений в балке под действием сосредоточенной  [c.162]

Оптически чувствительные слои на поверхности детали [32]. Слой из оптически чувствительного материала (например, ЭД6-М) наносится на поверхность металлической детали или ее модели в жидком виде (и затем подвергается полимеризации) или наклеивается на нее в виде пластинки. Измерения проводят в пределах пропорциональности между наблюдаемым порядком полос интерференции и деформацией в слое. С применением нормального и наклонного просвечивания поляризованным светом, который отражается от поверхности металла, определяют разность и величины главных напряжений и их направления. Деформации (и напряжения) в поверхности металлической детали могут находиться как в пределах, так и за пределом упругости. При деформациях в пластической области для определения напряжений необходимо иметь зависимость между напряжениями и деформациями для данного материала и имеющегося соотношения главных деформаций. Для повышения предела пропорциональности слоя эксперимент может проводиться при повышенной температуре, соответствующей методу замораживания (100—130°) или применяют соответствующий материал слоя.  [c.595]

Степень поляризации рассеянного света в видимой части спектра для диапазона значений радиуса а = 0,05н-0,25 мкм и угла наблюдения 5 = 90° изменяется с изменением монотонно. Радиус может быть оценен по измерениям интенсивности поляризованного света с помощью поляризационного фотометра. При больших радиусах частиц поляризация изменяется нерегулярно, максимум интенсивности смещается в сторону углов, больших 90°, появляются венцы и радуги.  [c.43]

Коэффициенты концентрации напряжений определяются разнообразными методами, включая непосредственные измерения деформаций, применение методов фотоупругости, использование методов теории упругости и проведение расчетов методом конечных элементов. Исследование напряжений методом фотоупругости было до недавнего времени самым широко распространенным способом изучения распределения напряжений и определения коэффициентов концентрации напряжений около различных геометрических особенностей. Метод основан на использовании двойного лучепреломления многих прозрачных материалов при деформировании их под нагрузкой. Анализ интерференционных полос, образующихся при просвечивании деформированных моделей из оптически активных материалов поляризованным светом, позволяет количественно охарактеризовать распределение напряжений в теле и рассчитать коэффициенты концентрации напряжений. В последние годы метод конечных элементов при определении коэффициентов концентрации напряжений в значительной степени потеснил метод фотоупругости. Численные значения коэффициентов концентрации для разно  [c.401]


При исследовании анизотропных препаратов к обычной схеме микроскопа добавляют перед конденсором— поляризатор, а после объектива — анализатор, находящиеся в скрещенном либо параллельном положении друг относительно друга. Объект может поворачиваться вокруг оси микроскопа. При скрещенных поляризаторе и анализаторе в темном поле зрения микроскопа видны темные, светлые или окрашенные двоякопреломляющие элементы объекта. Вид этих элементов зависит от положения объекта относительно плоскости поляризации и от величины двойного лучепреломления. Более точное определение оптических данных объекта делается с помощью различных компенсаторов (неподвижных кристаллических пластинок, подвижных клиньев и пластинок и др.). Все измерения при наблюдении в поле непосредственно объекта производятся при очень малой апертуре конденсора. Такое наблюдение называется ортоскопическим. При исследованиях с помощью микроскопа в поляризованном свете проводят также и коноскопическое наблюдение, т. е. наблюдение специфических интерференционных фигур в выходном зрачке объектива, для чего в схему микроскопа вводят дополнительную линзу, проектирующую изображение выходного зрачка в поле зрения окуляра. Эта линза носит название линзы Бертрана.  [c.16]

В образце квадратного поперечного сечения, подвергающемся сжатию между латунными листами картина распределения напряжений в поляризованном свете показывает, что у торцов образца напряжения распределены далеко не равномерно даже в том случае, когда приняты все возможные предосторожности для обеспечения совершенно равномерной передачи давления. Измерения подтверждают это предположение и указывают на наличие значительного влияния торцовых прокладок сжимающие напряжения понижаются для точек, расположенных у центра торцовых поверхностей это влияние исчезает только на некотором расстоянии от концов образца.  [c.499]

В работе [8.40] при измерении зависимости т] (у) на модулятор с фотопластинки проектировалось изображение решетки с v = = 5 лин/мм. Имелась возможность вращать фотопластинку вокруг оптической оси проектирующей системы и тем самым изменять ориентацию решетки относительно осей кристалла. Результаты измерения, получаемые для модулятора, у которого кристаллическая пластина имела срез (111) и толщину 700 мкм, показаны на рис. 8.10. Результаты получены при считывании циркулярно и линейно поляризованным вдоль оси кристалла [112] светом. При изменении направления поляризации линейно поляризованного света вид зависимости Т1 (y) сохраняется, но в соответствии с (8.2) кривая смещается вращением вокруг начала координат на угол, который в два раза больше, чем угол поворота плоскости поляризации считывающего света. Хорошее согласие экспериментальных данных с расчетными наблюдается лишь тогда, когда при записи решетки отрицательный потенциал подается на передний по отношению к считывающему свету электрод. Если же на этот электрод подать положительный потенциал, то экспериментальная кривая (7) оказывается повернутой приблизительно на 30° по отношению к расчетной (рис. 8.10). Это может быть объяснено влиянием оптической активности кристалла BSO, которая не учитывалась при расчете т] (у). Как указывалось выше, неоднородное электрическое поле, вызывающее модуляцию считывающего света, формируется вблизи отрицательного электрода. При прохождении через кристалл направление поляризации считывающего света изменяется на 15° (толщина кристалла в данном случае была 700 мкм, а коэффициент оптической активности BSO для  [c.174]

Оптический метод исследования напряжений в поляризованном свете, начало которому положил Максвелл (см. стр. 325), нашел широкое применение в XX веке. Менаже использовал его для проверки теории Фламана о распределении напряжений около точки приложения сосредоточенной силы ). Он воспользовался им также и в решении практической задачи исследования напряжений в арочном мосту ). Поляризационно-оптический метод позволяет установить разность между двумя главными напряжениями. Менаже показал, что сумму двух главных напряжений в исследуемой точке можно найти, если измерить в ней изменение толщины пластинки-модели. Эта идея была использована Кокером, сконструировавшим специальный поперечный тензометр для измерения этих изменений толщины. Он ввел также применение целлулоида, благодаря чему приготовление моделей для поляризационно-оптических испытаний было значительно упрощено. Труды Кокера ) содействовали широкой популяризации метода. Немало молодых научных работников-специалистов по фотоупругости приобрело свой первоначальный опыт в этой области как раз на практической работе в лаборатории Кокера при университетском колледже в Лондоне.  [c.460]


Кроме измерения поляризованного света люминесценции для исследования ориентационной релаксации может быть использован оптический эффект Керра. Этот эффект состоит в том, что показатель преломления изменяется под воздействием интенсивного электромагнитного поля. Такое изменение показателя преломления Ап при облучении короткими лазерными импульсами может быть описано соотношением (3.14). Этот эффект позволил измерить время ориентационной релаксации для небольших молекул в маловязких растворителях. Оно составило от единиц до нескольких десятков пикосекунд. Так, например.  [c.334]

Для измерения небольших величин эллиптичности поляризованного света и очень малых разностей хода двупреломления в объектах приме-  [c.90]

При измерении разности хода лучей поляризованного света, которым просвечивается модель, могут определяться в общем случае лишь разности главных напряжений. Для определения всех компонентов напряжений внутри объемной модели необходимы дополнительные вычислительные или измерительные методы. При поляризационно-оптических измерениях на прозрачных моделях могут определяться следующие величины  [c.159]

Отмеченные выше современные возможности поляризациоНнО--оптического метода достигнуты благодаря получению новых высококачественных материалов для моделей и развитию метода измерений. Рассмотренные в главе III методы и примеры исследований показывают, что с применением поляризованного света оказывается в настоящее время практически возможным решать с необходимой точностью различные сложные задачи распределения напряжений.  [c.160]

Метод сеток, основанный на явлении муара , разработан для определения напряжений на прозрачных объемных моделях. Исследования производятся по сечениям модели, в которых с применением склейки частей модели нанесены тонкие сетки. Модель выполняется из органического стекла и все измерения проводятся без применения поляризованного света. Разработка этого метода дана в публикации [57 ] и др.  [c.179]

Измерение эллиптической поляризации света, отраженного от поверхности металла при наклонном падении линейно поляризованного света, лежит в основе предложенного Друде экспериментального метода определения оптических характеристик них металла. Теория связывает м и х с эксцентриситетом и положением осей эллипса колебаний. По данным измерений этих величин можно рассчитать них. Наибольшая чувствительность метода (и одновременное упрощение расчетных формул) достигается при определенном угле падения (главном угле падения, играющем при отражении от поглощающих сред ту же роль, что и угол Брюстера при отражении от прозрачных сред). В большинстве случаев он лежит вблизи 70°. Для этого угла отраженный свет имеет круговую поляризацию, если соответствующим образом подобрать направление поляризации падающего света.  [c.163]

Применения поляризованного света чрезвычайно широки. Для поляризационных методов исследования характерно то, что они позволяют выполнять прецизионные измерения, которые не могут быть выполнены другими методами. В некоторых случаях поляризационные методы оказываются нетривиальными или более простыми.  [c.244]

Для неполностью поляризованного излучения наряду с вышеуказанными характеристиками поляризованной составляющей необходимо определить соотношение неполяризованной и поляризованной частей излучения, т. е. степень поляризации. Это соотношение определяется следующим образом учитывая, что пластинка Я/4 при определенной ориентации превращает поляризованную составляющую (эллиптически поляризованную) в линейно поляризованный свет, а анализатор гасит эту составляющую, то на выходе системы имеем интенсивность, равную половине неполяризованной составляющей. Следовательно, при измеренной полной интенсивности излучения однозначно определяется степень поляризации.  [c.289]

Приборы, предназначенные для измерения оптической активности сред и для измерения параметров поляризованного света, называются поляриметрами. Рационально поляризационный измерительный прибор можно классифицировать по трем следующим признакам по типу исследуемой поляризации, по назначению и по способу измерения.  [c.299]

Для определения разности главных напряжений необходимо замерить сдвиг фаз двух колебаний т) или разность хода лучей Г. Для этого применяются приборы, называемые полярископами. Простейшим типом полярископа является плоский полярископ, который состоит из источника света, двух поляроидов И экрана. Первый из поляриодов называется поляризатором, второй — анализатором. Поляризатор превращает свет, идущий от источника, в плоско-поляризованный, необходимый для измерения оптического эффекта.  [c.21]

Имеющиеся в настоящее время лучшие рефрактометрические методы позволяют измерять изменение показателя преломления порядка Следовательно, их чувствительность недостаточна для измерения кругового двулучепреломления по разности показателей преломления для света, поляризованного по кругу вправо и влево. Поэтому для измерения оптической активности веществ применяют другую методику и аппаратуру — спектрополяриметр для измерения величины угла вращения плоскости поляризации и дихрограф в виде приставки к сиектрополяриметру или самостоятельного прибора для измерения кругового дихроизма.  [c.299]

Описываемый метод применим в основном лишь к одноосным кристаллам (для стекол он не очень удобен, так как в этом случае окрун ение магнитных ионов не вполне определено). В других кристаллах двойное лучепреломление сильно мешает измерениям вращения плоскости поляризации, и рассматриваемый метод можно применять только в случае слабого двойного лучепреломления. При этом линейно поляризованный свет трансформируется в эллиптически поляризованный пучок. Когда эллиптичность не слишком  [c.398]

Для анализа определения направления главных напряжений при прохождении эллиптического поляризованного света применяют компенсатор Сенармона. Он состоит из пластинки А./4 и анализатора. Свет после поляризатора проходит объект, пластинку и анализатор Перед измерением анализатор и поляризатор устанавливают в скрещенное положение, а затем вносят пластинку четверть волны (Х/4) и ориентируют ее так, чтобы ее главные направления совпадали с направлением колебаний, пропускаемых анализатором и поляризатором. Разность фаз колебаний, создаваемую объектом, определяют по формуле  [c.111]


Оптические чувствительные покрытия и просвечиваемые поляризованным светом модели позволяют получать информацию, которая носит непрерывный характер, имеют практически нулевую базу измерений и могут быть применены для измерений напряжений на поверхности натурных конструкций и их моделей. Обычная техника поляризационнооптических измерений позволяет получать достаточно малую погрешность измеряемых величин напряжений, при этом оценка погрешности задается в норме пространства непрерьтных функций С. При применении современной регистрирующей аппаратуры возможно получение малой величины как самой погрешности, так и ее производной, что соответствует заданию нормы погрешности в пространстве непрерывно дифференцируемых функций С или в пространстве W непрерьтных функций с квадратично суммируемой производной.  [c.61]

Метод замораживания"-Объемная модель изготовляется из прозрачного материала, обладающего способностью к замораживанию". Нагруженная модель нагревается до температуры замораживания , выдерживается при ней и затем в нагруженном состоянии охлаждается до комнатной температуры. В модели после снятия нагрузки сохраняются упругие деформации, полученные при нагреве, как и в любом вырезанном из нее срезе (пластинке). Просвечивание вырезанных срезов поляризованным светом позволяет определить разнссть квазиглавных напряжений и их направления при нагреве срезов или частей модели их размеры возвращаются к первоначальным ( размораживание ), что используется для измерения линейных деформаций. Нагрузочные устройства не мешают измерениям.При исследовании напряжений быстровращающихся деталей устраняется необходимост 1 измерений во время вращения.  [c.530]

Когда поляризованный свет отражается от поверхности металла, покрытой окислом металла, то плоскость поляризации поворачивается на некоторый угол. Эллипсометр — это инструмент, способный измерить такое вращение, которое затем может быть связано с толщиной окисла. Эта весьма сложная и тонкая методика измерений относится к наилучшим способам. Она используется для измерений очень малых приращений толщины пленок, например  [c.52]

Я выбрал относящиеся к нашему обсуждению результаты из обширных таблиц Фохта для измерений при кручении и изгибе девяти образцов, вырезанных из пятидесятимиллиметровых по толщине пластин, изготовленных из зеленоватого стекла с удельным весом 2,540 (и показателем преломления 1,55). Он отметил, что, несмотря на значительную толщину, в поляризованном свете стекло оставалось бесцветным ). Начиная с глубины 6 мм, стекло оказалось вполне изотропным, о чем судил Фохт на основании сравнения значений модуля упругости при сдвиге, определенного в девяти опытах при шести различных комбинациях длины образца и его ориентации в пластине, как это видно из данных табл. 73. Образцы, обозначенные в таблице символами 1 и II, были вырезаны вблизи поверхности и имели постоянные упругости, отличные от постоянных упругости для образцов с большей глубины. Для последних среднее значение коэффициента Пуассона составило 0,213 при наименьшем 0,211 и наибольшем 0,218.  [c.358]

При падении светового пучка под углом к нормали наблюдаются не только разные коэффициенты отражения, но и разные изменения фазы отраженных световых волн для 8- и р-поляризованных компонент пучка. Регистрация различий фазовых скачков для разных поляризаций света лежит в основе эффективного метода диагностики поверхности — эллипсометрии [4.29]. Величины фазовых скачков зависят от действительной и мнимой частей комплексного показателя преломления материала. Поскольку обе части зависят от температуры, эллипсометрию можно применить для измерения температуры поверхности. Первые работы по эллипсометрической термометрии монокристаллов кремния и германия появились 30 лет назад [4.30, 4.31].  [c.104]

Для измерения небольших величин эллиптичности поляризованного света и очень малых разностей хода двупрело-мления в объектах применяется поворотная пластинка (эллиптический компенсатор) из слюды толщиной 11—4 мк, что  [c.62]

Исследование горизонтальной пластины рамы поля-ризационно-оптическим методом может проводиться без применения метода замораживания на модели из материала ЭДб-М. Целью проведенных исследований являлось определение напряжений по контуру пластины, разработка метода определения усилий по опорным валикам узла рамы и измерение усилий натяга в натяжных валиках. Модель и схема нагружения ригеля приведены на фиг. VII. 19. Для воспроизведения изгибающих моментов, имеющихся на концах стойки в целой раме, опоры стоек из органического стекла смещены с оси на эксцентрицитет е = 2,3 мм, полученный из расчета замкнутой рамы. Опорные валики выполнены из оптически чувствительного материала и просвечиваются поляризованным светом одновременно с ригелем для определения приходящихся на каждый из них усилий. Клиновидные полувалики выполнены из органического стекла и ими осуществляется требуемый предварительный натяг  [c.532]

Последний связан с измерением мощности прошедшего через анализатор излучения в зависимости от угла поворота илоскости пропускания анализатора. На рис. 381 для нршмера графически приведены указанные зависимости /—для линейно поляризованного света, II—эллиптически поляризованного света и III— по кругу поляризованного света. Здесь мощность излучения изображается длиной радиуса-вектора, а угол отсчитывается между плоскостями поляризатора и анализатора.  [c.504]

По первому признаку приборы можно разделить на следующие группы —поляриметры для измерения угла вращения плоскости поляризации линейно поляризованного света, эллипсомет-ры для определения параметров эллиптически поляризованного света и приборы для определения степени поляризации.  [c.299]


Смотреть страницы где упоминается термин Поляризованный свет для измерения : [c.515]    [c.118]    [c.610]    [c.64]    [c.91]    [c.169]    [c.263]    [c.591]    [c.76]    [c.428]    [c.405]    [c.37]    [c.29]    [c.835]    [c.558]    [c.28]    [c.196]   
Теория упругости (1937) -- [ c.0 ]



ПОИСК



Измерение вращения плоскости колебаний поляризованного свет

Измерение вращения плоскости колебаний поляризованного света

Поляризованное

Поляризованный свет для измерения напряжений

Свет поляризованный

Свет поляризованный, применение его при измерении напряжений



© 2025 Mash-xxl.info Реклама на сайте