Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушение материала при ползучести при циклическом нагружении

Разрушение материала при ползучести 327 --при циклическом нагружении 258 Релаксация 326 Решение Галина 228  [c.492]

При скоростях установившейся ползучести более 5 1СГ цикл" наступает квазистатическое разрушение, при меньших скоростях — усталостное. Напряжения и соответствующие им долговечности Л/ являются характеристиками материала, определяющими его работоспособность и склонность к хрупким разрушениям при циклическом нагружении. В табл. 12 приведены а л N для некоторых сплавов.  [c.97]


Корпуса современных энергетических установок [1—3] представляют собой ответственные и сложные конструкции, к надежной работе которых предъявляются специальные требования. В соответствии с нормами [4] оценка их прочности проводится по таким предельным состояниям, как пластическая деформация или деформация ползучести по всему сечению, появление макротрещин при циклическом нагружении, разрушение (вязкое и хрупкое) и др. При проведении поверочного расчета, позволяющего уточнить геометрическую форму конструкции и определить допускаемое число циклов нагружения и ресурс эксплуатации. Напряжения рассчитываются, как правило, в предположении упругого поведения материалов и в том случае, если они по расчету превышают предел текучести материала местные напряжения и деформации в зонах концентрации в упругопластической области определяются через номинальные и местные в упругой области. При этом для удобства выполнения расчетов, принятых в инженерной практике, вместо упруго-пластических деформаций рассматриваются условные упругие напряжения, равные произведению этих деформаций на модуль упругости [4].  [c.75]

Основные закономерности малоциклового деформирования в настоящее время уже достаточно хорошо изучены [7, 35, 43, 44, 101, 122, 123], и результаты этих исследований кратко обсуждены в гл. 1. В данном разделе рассматриваются особенности деформирования и разрушения конструкционных материалов при высоких температурах, когда проявляются температурно-временные аффекты ползучесть, релаксация и структурные изменения материала. Особое внимание уделено исследованиям при циклическом нагружении в условиях интенсивного деформационного старения, сопровождающегося сильным изменением прочностных и пластических свойств материала во времени. Причем интенсивность и характер этих изменений зависят также и от условий деформирования, и в первую очередь от формы цикла и частоты нагружения. Учет изменений пластических свойств во времени, определяющих сопротивление материала малоцикловому и длительному статическому разрушению, требует проведения сложных экспериментов в условиях, приближающихся к эксплуатационным, во многих случаях характеризующихся сильным протеканием деформационного старения.  [c.166]

Нормативные методы расчета на прочность сосудов высокого давления, которые работают при температурах, не вызывающих ползучести материала, основаны на принципах оценки по предельным состояниям (вязкому разрушению, охвату всего сечения элемента сосуда пластической деформацией, возникновению макротрещин при циклическом нагружении). Толщины элементов рассчитывают по предельным нагрузкам, соответствующим предельным состояниям вязкому разрушению или пластической деформации по сечению элемента (ОСТ 26 104 87). При расчете по методу предельных нагрузок расчетное давление р принимают в щ или раз меньше значений р., или р (где р , Рв - давление, при котором вся стенка элемента соответственно переходит в пластическое состояние или разрушается tij, п - коэффициент запаса статической прочности соответственно по р-, или р ).  [c.779]


Определение числа циклов до разрушения покрытия по известным из п. 6 размахам деформации ползучести и из п. 3 параметрам прочности материала покрытия при циклическом нагружении.  [c.477]

Характер и интенсивность деформирования зависят от геометрии конструктивного элемента, времени вьщержки под постоянной нагрузкой, рабочих температур и номинальной нагрузки. В мембранной зоне происходит накопление деформаций при циклической ползучести, в зоне концентрации — знакопеременное циклическое деформирование. При этом достигается соответственно предельное состояние по условиям квазистатической (длительной статической) прочности или по условиям малоцикловой (длительной малоцикловой) прочности. Характерно, что в мембранной зоне длительное статическое разрушение в условиях повторного нагружения может происходить при различных значениях односторонне накопленных деформаций в зависимости от деформационной способности материала и процессов высокотемпературного старения и охрупчивания.  [c.123]

Влияние частоты наложенных деформаций и, что не менее важно, скорости нагружения в условиях двухчастотного нагружения может быть проиллюстрировано па примере сопоставления рассмотренных выше результатов и экспериментальных данных, полученных при двухчастотном нагружении этой же стали с формой циклов, представленной на рис. 4.19, е, когда частота низкочастотного нагружения (включая время выдержек), температура, а также уровни максимальных и высокочастотных напряжений оставались прежними, а частота а,,, составляла /2 = 30 Гц, что соответствовало соотношению частот = 18 000. Характер развития деформаций в этих условиях показан на рис. 4.27. Важно, что их кинетика в основном подобна изменению соответствующих характеристик при нагружении с меньшим соотношением частот (см. рис. 4.25). Как и в последнем случае, полная ширина петли гистерезиса б после уменьшения в первые циклы нагружения вследствие упрочнения материала в дальнейшем несколько стабилизируется, а затем начинает увеличиваться (рис. 4.27, а), но интенсивность разупрочнения материала в этом случае существенно ниже, чем при нагружении с/2//1 = 80. Активная же составляющая циклической пластической деформации бд вплоть до разрушения остается на установившемся уровне для всех исследованных напряжений. В связи с этим увеличение с числом циклов полной ширины петли следует отнести за счет деформации циклической ползучести которая также непрерывно увеличивается после начальной стадии нагружения (рис. 4.27, 6). Если сравнить ее абсолютные значения для одних и тех же уровней максимальных напряжений двухчастотного нагружения при /2 /1 = 18 000 и /2//1 = 80 с нагружением по трапецеидальной форме циклов, принимая во внимание при этом закономерности взаимосвязи диаграмм циклического деформирования по про-  [c.96]

Долговечность при термоциклической усталости существенно зависит от частоты изменения температуры, длительности периодов выдержки между очередными теплосменами и прочих факторов. Подробнее эти вопросы будут рассмотрены при оценке влияния процессов ползучести и релаксации напряжений на долговечность материала. Разрушения при термической усталости материалов происходят в диапазоне так называемой малоцикловой усталости. Большинство применяемых в теплоэнергетике конструкционных сталей и жаропрочных сплавов как при термоциклическом, так и при циклическом механическом нагружении разрушается или в них появляются макротрещины через 10 — 10 циклов.  [c.7]

За характерный период эксплуатации в опасных зонах конструктивного элемента возникают различные виды повреждений малоцикловое усталостное (длительное малоцикловое усталостное) и квазистатическое (длительное статическое), причем длительное малоцикловое усталостное и длительное статическое повреждения обусловливаются проявлением временных эффектов — ползучестью, релаксацией напряжений, деформационным охрупчиванием материалов и т. п. Предельное состояние по условиям прочности и малоцикловое разрушение материала определяются взаимосвязью и преимущественным влиянием того или иного вида повреждения в зависимости от удельного веса соответствующих этапов в режиме эксплуатации. В основном при циклическом неизотермическом высокотемпературном нагружении реализуется смешанный характер разрушения, когда основные виды малоциклового повреждения (усталостное и квазистатическое) сопоставимы.  [c.44]


Материалы могут быть в вязком состоянии, при котором их разрушению предшествует существенная пластическая деформация и соответствующие затраты механической энергии. Они могут быть в хрупком состоянии, когда их разрушению не предшествует существенная пластическая деформация и процесс разрушения протекает быстро. Их состояния могут быть и промежуточными, когда разрушения сопровождаются незначительными пластическими деформациями и развиваются с невысокими скоростями. При длительных и циклически меняющихся нагрузках медленно протекающие процессы изменения состояния материала порождают явления замедленных во времени усталостных разрушений. В случае длительных статических нагружений в условиях повышенных температур медленно протекающие процессы ползучести и изменения состояния материала являются причиной их замедленного во времени длительного статического разрушения. На состояние материала и его изменения в процессе эксплуатации может оказывать существенное влияние среда (например, поля радиации и высокочастотных механических колебаний).  [c.5]

Цикличность изменения нагрузки и температуры, ускоряя рекристаллизацию металла и коагуляцию упрочняющей фазы, также обычно увеличивает скорости ползучести и, кроме того, вызывает усталость металла, в том числе и термическую. Поскольку рабочие напряжения сжатия в электродах при высоких температурах превосходят предел текучести материала, циклическое нагружение происходит в области малых долговечностей. Окисление рабочей поверхности электродов, увеличивая сопротивление контактов электрод— деталь, приводит к еще большему нагреву металла при прохождении тока. В результате периодического нагружения при ползучести в металле электродов могут образовываться микротрещины. Наличие микротрещин ползучести, вызывая концентрацию напряжений, ускоряет образование усталостных трещин, а те, в свою очередь, способствуют разрушению при ползучести, а именно быстрому износу и увеличению исходного диаметра рабочей поверхности электродов (в случае электродов с плоской поверхностью).  [c.6]

В этих условиях деформационные и прочностные свойства материала покрытия малоизвестны, что практически исключает возможность расчета прочности покрытия на основе метода, который предполагает знание деформационных и прочностных свойств металла во всех точках системы покрытие - основной металл. Для решения этой задачи в методике [293] используется аппарат, требующий задания по возможности минимального количества параметров. В качестве такого аппарата принята структурная модель циклически стабильного материала [31]. Существенным ее преимуществом является наличие всего лишь двух определяющих функций реологической, определяющей физические свойства подэлементов, и функции неоднородности распределения характеристик между подэлементами. Эти функции находят по результатам изотермических испытаний стандартного типа на растяжение при различных значениях температуры. Исходными данными для назначения параметров модели являются изотермические диаграммы деформирования и кривые ползучести материала в стабильных циклах. В методике использована несколько измененная структурная модель материала для исследования кинетики деформирования многослойной системы покрытие - переходная зона - основной металл. В ней приняты следующие предположения признаком разрушения лопатки считается появление трещины в покрытии покрытие в силу своей малой толщины не влияет на поле напряжений и деформаций в лопатке и по всей толщине работает в условиях жесткого нагружения при тех деформациях, которые имеет лопатка в области нанесенного покрытия используется критерий разрушения [294]  [c.476]

Пример релаксации термических напряжений в жестко закрепленном стержне при его нагреве и выдержке в течение 10,7 мин и схема процесса развития деформаций приведены на рис. 39. Процесс циклического термического нагружения, при котором каждый цикл осуществляется с выДержкой при максимальной температуре, сопровождается процессом циклической ползучести, однако значительно более сложным, чем циклическая ползучесть при изотермическом нагружении. Наиболее существенно то, что в каждом цикле при охлаждении материал деформируется нагрузкой противоположного знака (в рассматриваемом случае — растяжением), которая вызывает пластическую деформацию. Если принять, что процессы развития деформаций ползучести при релаксации напряжений и постоянном напряжении — процессы одного типа, при которых большое значение имеет степень искажения решетки кристаллов, то влияние холодного наклепа, происходящего в каждом цикле термонагру-жения, должно быть значительным. Оно проявляется в уменьшении числа циклов до разрушения (см. тл. III) подобно тому, как при предварительном пластическом деформировании снижаются длительная статическая прочность (время до разрушения) и пластичность. В табл. 12 приведены значения этих характеристик, полученные при испытании сплава ХН77ТЮР по режиму, соответствующему техническим условиям на сплав /=750°С 0=350 МПа. Величина наклепа определялась степенью пластического деформирования образцов  [c.103]

При циклическом нагружении эффективный коэффициент концентрации почти всегда меньше теоретического (Лэф < н). Это объясняется перераспределением напряжений, вызываемым текучестью материала в пластической зоне и ползучестью влиянием градиента напряжений и масштабного фактора зависимостью в общем случае условий разрушения от комбинации главных напряжений у поверхности концентратора и по сечению (см. параграф 2.2). Какой из перечисленных факторов является определяющим, зависит от материала, уровня напряжений и температуры. С повышением <Гв значение Лэф увеличивается. Так, например, для титанового сплава ВТ22М Е.А. Борисовой, А.Ф. Матвеенко и др. получены следующие данные  [c.172]


Деформационная трактовка разрушения материалов при длительном циклическом нагружении используется и в работах [47, 48, 61]. Трактовка выполняется в форме, пригодной для оценки и усталостных, и квазистатических повреждений. Предлагается раздельно учитывать повр ежденйя от накопления односторонних пластических и знакопеременных деформаций, а также односто-роннцх и, знакоцеременных деформаций ползучести. Предполагается взаимное влияние на предельную деформационную способность материала усталостных и квазистатических повреждений указанного типа. Трактовка нуждается в уточнении способов определения компонент повреждений и достаточном экспериментальном обосновании.  [c.42]

Анализ поведения оболочки ТВЭЛ при теплосменах [190J основывается на дальнейшем развитии метода рассмотренного, в статье [210], и по основной идее весьма близок к методу догрузки (см. гл. III). На первом этапе расчет строится без учета температурной зависимости предела текучести, упрочнения материала и ползучести. Полученная при этих допущениях полная диаграмма приопособляемости показана на рис. 109. Здесь А — область приспособляемости, Б — область знакопеременной пластической деформации, В — односторонней деформации, прогрессирующей с каждым циклом, Г —сочетания обоих видов циклической пластической деформации, D —область мгновенного разрушения (исчерпания несущей способности) находится правее линии 5 (ор=1). Область приспособляемости А на диаграмме разделена на три части А отвечает чисто упругому поведению с начала нагружения, А" определяет значения параметров нагрузки и температурного поля (ор=  [c.206]

Таким образом, применяя метод оценки долговечности в условиях длительного повторного нагружения, можно определить скорость накопления повреяодений в зависимости от типа напряженного состояния, режима нагружения и свойств конструктивного материала, а следовательно, прогнозировать место разрушения. В качестве базовых данных при оценке долговечности используют кривые длительной малоцикловой усталости и располагаемой пластичности конструкционного материала. При анализе кинетики НДС в рассмотрение вводят диаграммы длительного циклического деформирования и кривые циклической ползучести. Б этом случае сопротивление деформированию характеризуется соответствующими мгновенной и изохронными кривыми деформирования.  [c.11]

Малоцикловая усталость. Кривые малоцикловой усталости при мягком нагружении (амплитуда напряжений постоянная) для титановых сплавов, как и для других металлов, можно условно разбить на три типичных участка первый — неразрушения, второй и третий — соответственно квазистатического и усталостного разрушения. На первом участке, лежащем в интервале до —40—50 циклов, разрушения при амплитуде напряжений ниже временного сопротивления не происходит. На втором участке материал разрушается в результате циклической ползучести после исчерпания его пластичности и носит явно выраженный квазистатический характер (наличие шейки, большая остаточная деформация). Усталостное разрушение, наблюдающееся на третьем участке, характеризуется низким остаточным удлинением и специфическим усталостным видом излома. Протяженность участка квазистатического разрушения для титановых сплавов меняется в достаточно широких прёделах (от 40 до 20 ООО циклов) и при прочих равных условиях зависит от температуры испытания. Типичные Кривые малоцикловой усталости титановых сплавов [84] при пульсирующей нагрузке растяжением представлены на рис. 77. При жестком циклическом нагружении (амплитуда  [c.164]

Малоцикловая усталость при различной форме циклов нагружения и нагрева при мягком режиме испытания. Основным фактором, определяющим характер перераспределепия повреждений в условиях мягкого режима и выдержек в области высоких нагрузок при повышенных температурах, является процесс монотопного накопления деформаций циклической ползучести, интенсивность которого в первую очередь связана с формой и длительностью цикла нагрузки и температурой. Время до разрушения материала с пони-  [c.56]

Простейшие подходы к описанию разрушения, рассмотренные в главе АЗ, мало применимы при сложных программах изменения нагрузки и температуры в цикле, даже в случае регулярного циклического нагружения, которое в основном рассматривается ниже. Особенную трудность представляет отражение влияния ползучести при выдержках в полуциклах. Для его моделирования могут быть использованы методы разделения размаха (см. разделы А6.1, А6.2 — последний включает дополнительный учет взаимного влияния разных видов накапливаемого повреждения). Более традиционно для феноменологического описания использование уравнения состояния, в соответствии с которым скорость накапливаемого повреждения представляет собой функцию текуш,его состояния материала. Главная трудность при этом заключается в выборе параметров состояния, оп-ределяюш,их достоверность и удобство модели. В разделе А6.3 рассматривается такая модель, основанная на параметрах, выявленных благодаря анализу структурной модели среды (см. гл. А5). Раздел А6.4 затрагивает сложную проблему моделирования процесса распространения треш,ин малоцикловой усталости. Эта проблема тесно связана с проблемой образования макротреш,и-ны, которой посвяш,ена первая часть главы.  [c.213]

Увеличение деформации на заключительной стадии нагружения, обусловливаюш,ее расширение полной петли гистерезиса бя, объясняется усталостным повреждением материала от высокочастотной составляюш,ей напряжений, которое увеличивает скорость циклической ползучести и сокраш,ает время до разрушения 9], Дополнительным усталостным повреждением материала от высокочастотной состав л яюш,ей, а так ке особенностями деформирования при сочетании активного малоциклового нагружения и ползучести в течение временной выдержки, рассмотренными выше, объясняется и прогрессируюш,ее с числом циклов нагружения одностороннее накопление пластических деформаций (рис. 5, б), характер которого подобен двухчастотному нагружению с мень-ш>им соотношением частот (см. рис. 2, б).  [c.95]

Основные закономерности. Главным условием, свидетельствующим о накоплении повреждений при низкочастотном нагружении и способности материала в этих условиях разрушаться, является наличие циклических необратимых деформаций (размаха неупругих деформаций, петли гистерезиса). Возможность образования таких деформаций существует не только при знакопеременном, но и при знакопостоянном нагружении. Они в этих условиях обра ются либо при наличии концентраторов, способствующих образованию значительных остаточных напряжений (больших <Гу), либо за счет процессов обратного последействия в условиях ползучести, либо в связи с микропластическими деформациями. Так, например, в испытаниях титанового сплава ВТ8 при циклических знакопостоянных напряжениях при 20 и 450 С (температурах, при которых интенсивно развиваются процессы ползучести) усталостные разрушения наблюдались при напряжениях, меньших предела упругости, в то время как при температуре 350 С, вызывающей деформационное старение сплава, резко затормаживающее ползучесть, разрушения при напряжениях, меньших <г ц, не наблюдались.  [c.180]


Циклические ползучесть и релаксация. При выводе уравнений состояния (7.38)—(7.40) игнорировалось различие диаграмм деформирования реономных и склерономных стержней. Получаемая ошибка, малозаметная в каждом этапе нагружения, в определенных условиях может накапливаться. Например, циклическое несимметричное нагружение в соответствии с указанными уравнениями дает замкнутую (неподвижную) петлю пластического гистерезиса фактически часто наблюдается постепенное сползание петли вследствие реономности материала — в зависимости от условий возникают эффекты, называемые циклической ползучестью (задаются напряжения) или циклической релаксацией (задаются деформации). При непосредственном расчете кинетики деформаций в стержнях модели (без использования допущений, принятых при выводе указанных уравнений состояния) эти эффекты находят отражение. Однако можно воспользоваться уже рассмотренными методами анализа (исследование эпюр распределения упругих деформаций) для получения асимптотических решений в общей форме, т. е. определения границ сползания петель гистерезиса, если они существуют, и определения условий, в которых циклическая ползучесть происходит неограниченно (вплоть до ква-зистатического разрушения).  [c.210]

При очень большом числе циклов нагоужения (порядка 10 -1 (г), характерном для транспортных ГТУ (судовых, авиационных), и температурах, при которых ползучесть металла в пределах полотна диска не играет существенной роли, представляется наиболее обоснованным требование практически полного отсутствия пластических деформаций во всех циклах (за исключением разве некоторого, относительно небольшого, количества первых циклов). Этому требованию проще всего удовлетворить при проектировании с использованием расчетов, основанных на теории приспособляемости. Поэтому такой подход в последнее время кладется в основу нормирования запасов прочности для циклических режимов (с учетом температурных напряжений), соответствующих наиболее часто встречающимся в эксплуатации маневрам ГТУ. При этом следует отметить, что в тех случаях, когда в пределах полотна диска имеют место значительные концентраторы напряжений (на ободе, у отверстий для крепления и т.д.), обычный его упругий расчет (лежащий в основе расчета дисков по теории приспособляемости) необходимо дополнять расчетом его по схеме плоской задачи или пространственной осесимметричной задачи теории упругости (например, методом конечных элементов) с тем, чтобы при нахождении условий приспособляемости учесть фактические значения напряжений в районе концентраторов. В тех случаях, когда диск ГТД работает при таких температурах, при которых уже нельзя пренебречь ползучестью его материала, расчет диска по теории приспособляемости (даже если в рамках этого расчета вместо предела текучести используется какая-либо другая характеристика материала, связанная с ползучестью, например предел ползучести сгл на соответствующей базе и циклический предел упругости в условиях ползучести Sт), представляется недостаточным и его желательно дополнять расчетом стабилизированного цикла [71] и деформаций ползучести, накапливаемых в каждом таком цикле. Применительно к переменным режимам аварийного типа Например, пуск из холодного состояния с последующим мгновенным или просто очень быстрым набором перегрузочной мощности), в процессе которых могут возникать относительно большие пластические деформации (и, может быть, ползучесть), но зато известно, что число таких циклов нагружения за весь срок службы двигателя невелико (например, несколько десятков) описанный выше подход уже не является целесообразным. Для оценки запасов прочности применительно к таким режимам (определяемых как отношение числа циклов до разрушения или появления макроскопической трещины к фактическому числу циклов) необходим расчет, как минимум, параметров стабилизированного цикла или полный расчет кинетики нагружения - цикл за циклом, а также знание соответствующих критериев разрушения, учитывающих накопление повреждений от необратимых деформаций любого типа. аяя  [c.483]


Смотреть страницы где упоминается термин Разрушение материала при ползучести при циклическом нагружении : [c.144]    [c.146]    [c.68]    [c.62]    [c.11]    [c.15]    [c.184]   
Уравнения и краевые задачи теории пластичности и ползучести (1981) -- [ c.258 ]



ПОИСК



Нагружение циклическое

Разрушение материала при ползучести

Разрушение материалы

Разрушение при ползучести

Циклическая ползучесть

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте