Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Контроль химического состава среды

Обеспечивать контроль химического состава среды (не полагаться только на одни ингибиторы, если с их помощью разъедание не может быть полностью остановлено).  [c.43]

Совершенствование защитных сред, используемых при сварке, идет в направлении упрощения их состава. Многокомпонентные обмазки и флюсы в некоторых случаях успешно заменяются менее сложными газовыми средами или инертными газами. Легкость контроля химического состава газов и относительное постоянство их свойств как защитной среды дает возможность повысить стабильность и качество швов при сварке цветных и легких металлов и спецсталей.  [c.89]


Обеспечивать контроль за химическим составом среды (приме-  [c.40]

Для осуществления контроля за водным режимом электростанций и работой установок очистки воды и конденсата необходимо измерять разнообразные показатели качества отличающихся по химическому составу сред. Эти среды находятся под различным избыточным давлением, имеют различную температуру, отличаются по количеству механических и других примесей. Вследствие этого во многих случаях для снижения давления и температуры, а также для удаления механических примесей или растворенных газов из пробы контролируемой среды необходимо перед первичным преобразователем устанавливать специальные дополнительные устройства. Для отбора представительной пробы среды используют различные пробоотборные устройства. Применение указанных дополнительных устройств позволяет создать для первичных измери-  [c.622]

Как известно, в других отраслях промышленности для измерения плотности различных смесей и растворов успешно применяется аппаратура, основанная на использовании -[ -излучения радиоактивных изотопов [1, 2]. Плотность среды определяется по степени поглощения в ней [-излучения. Однако вещества, имеющие одинаковую плотность, но отличающиеся по химическому составу, различно поглощают -излучение. Поэтому при контроле плотности металлургической пульпы изменения ее минералогического состава могут вызвать погрешности в измерении. Очевидно, что эти погрешности будут наибольшими при изменении концентрации минералов, содержащих тяжелые элементы, и особенно при использовании мягкого -излучения.  [c.159]

В зоне соприкосновения двух разнородных материалов возникает контактная разность электрических потенциалов. Один металл из этой пары, обладающий менее отрицательным потенциалом по сравнению с другим, является более благородным . Поверхность конструкционного материала может быть неоднородной по химическому составу, по физическим свойствам (местные нагартовки и пр.). Может быть неоднородной и среда-электролит (различная концентрация примесей). Это приводит к образованию макро- и микрогальванических элементов с появлением электрических токов, которые и являются причиной электрохимической коррозии. В системе возникают анодные и катодные участки. Анодные участки обладают более отрицательным электродным потенциалом. Здесь металл переходит в виде гидратированного иона в раствор, оставляя на поверхности электроны (процесс окисления). В области катода притекающие с анодного участка электроны передаются частицам вещества-деполяризатора, например кислорода. В зависимости от того, кинетика какой реакции определяет коррозию, говорят об анодном или катодном контроле скорости коррозии.  [c.22]


Регистрация состояния соприкасающихся сред. Весьма важную диагностическую информацию несет масло, которое используется для смазывания и охлаждения трущихся поверхностей (подшипников, шестерен и т. д.). Диагностический контроль осуществляется по наличию стружки и содержанию железа в масле. Используются специальные приборы — сигнализаторы стружки, которые выдают сигнал при наличии в масле металлических частиц. Металлические частицы в выхлопных газах могут быть замечены с помощью датчиков, воспринимающих ионизацию среды. Диагностическое значение. имеет анализ химического состава выхлопных газов и других продуктов выхлопа.  [c.189]

Развитие процесса диффузии приводит к образованию диффузионного слоя, под которым понимают слой материала детали у поверхности насыщения, отличающийся от исходного по химическому составу, а значит, структуре и свойствам (рис. 5.8). Материал детали под диффузионным слоем, не затронутый воздействием насыщающей активной среды, называется сердцевиной. Кратчайшее расстояние от поверхности насыщения до сердцевины сост ляет общую толщину диффузионного слоя. При контроле ХТО чаще пользуются эффективной толщиной диффузионного слоя, под которой понимают кратчайшее расстояние от поверхности насыщения до мерного участка, характеризуемого установленным предельным номинальным значением базового параметра. Под базовым параметром диффузионного слоя понимают параметр материала, служащий в данном испытании критерием изменения качества в зависимости от расстояния от поверхности насыщения. В качестве базового параметра принимают или концентрацию диффундирующего элемента, или свойства, или структурный признак. Прилегающую к сердцевине внутреннюю часть диффузионного слоя, протяженность которой определяется разностью общей и эффективной толщин, называют переходной зоной диффузионного слоя (рис. 5.8).  [c.121]

Высокотемпературные термопары, работающие в вакууме, окислительной, восстановительной и нейтральных средах, позволяют осуществить контроль и автоматизировать многие тепловые процессы металлургической, химической и керамической промышленности. Такие термопары должны быть устойчивы как в среде агрессивных газов, так и при действии на них расплавленных металлов, солей и шлаков. Современные промышленные термопары с металлическими электродами не могут обеспечить измерение высоких температур расплавленных сред, агрессивных газовых сред вследствие изменения химического состава и физических свойств электродов при высоких температурах в контакте с этими средами. В связи с этим проводятся широкие исследования разработки термоэлектродов из неметаллических материалов графита, карбида бора, карбида кремния, окислов, тугоплавких бескислородных соединений, обладающих высокой стойкостью в различных агрессивных средах при высоких температурах.  [c.175]

Среди методов контроля особо необходимо отметить метод вихревых токов, который имеет высокую чувствительность и не требует особых навыков от контролера, так как обладает наглядностью и четкостью, фиксируя отклонение химического состава относительно эталонного образца. Этот метод выявляет качество проведенной термической обработки (взамен измерения твердости).  [c.342]

Обеспечивать химический контроль состава среды.  [c.42]

Технические условия ТУ 14-3-460-75 распространяются на стальные бесшовные трубы для паровых котлов и трубопроводов установок высоких и сверхкритических параметров пара — при давлении среды свыше 10 МПа и заменили действовавшие ранее МРТУ 14-4-21-67. Трубы, поставляемые по ТУ 14-3-460-75, изготавливаются из катаной или кованой ободранной заготовки. Сталь выплавляется в мартеновских или электрических печах. ТУ 14-3-460-75 определяют геометрические размеры (наружный диаметр, толщину стенки, длину), допускаемые отклонения по геометрическим размерам, а также требования к химическому составу и механическим свойствам металла, объемы и методы контроля, правила приемки и требования к транспортировке.  [c.71]

Имеются две традиционные области широкого применения СО химического состава. Первая — анализы, выполняемые для целей управления технологическими процессами производства тех металлов и сплавов, которые имеют массовое назначение, и для контроля качества металлургической продукции. Вторая — анализы, выполняемые для геолого-разведочных работ. Менее масштабным, но весьма важным является применение таких СО в других отраслях материального производства, а также для контроля за состоянием окружающей среды и для целей здравоохранения.  [c.11]


К специальным методам контроля относятся также определение механических свойств сварного соединения, металлографические исследования структуры сварного соединения, анализ химического состава металла шва или наплавленного металла, определение коррозионной стойкости сварного соединения в определенной среде. Необходимость их применения устанавливается ТУ на изготовление и приемку конструкций.  [c.131]

Важность определения следовых количеств элементов в окружающей среде, в химических, биологических, металлур-гических объектах хорошо известна. Часто требуется определить в пробах сложного состава массой в несколько миллиграммов содержание целого ряда элементов па уровне 10 — 10 % и ниже. Такого рода задачи требуют контроля предела обнаружения используемых систем аналитических исследований. Рассмотрим в качестве примера корреляционную хроматографию.  [c.104]

Среди фундаментальных характеристик вещества, таких как химический состав, плотность, электропроводность, вязкость, одно из основных мест принадлежит оптическим постоянным — показателю преломления п и показателю поглощения х. Эти величины, описывающие взаимодействие электромагнитного поля со средой, чутко реагируют на изменение ее состава или структуры. Поэтому оптические методы измерения я и х, сочетающие высокую точность, быстродействие, возможность неразрушающего и дистанционного контроля, получили широкое распространение в практике физико-химического анализа. Тем не менее, эти методы совершенно недостаточно используются для контроля поглощения сред (х > 10 —10 ), хотя известно, что спектральные и оптические характеристики наиболее чувствительны к изменению состояния вещества в области полос поглощения. Одной из причин этого является отсутствие табличных данных по оптическим постоянным.  [c.6]

Углеродным потенциалом углеродсодержащей атмосферы (условное обозначение—% С) при определенной температуре называют концентрацию углерода (в процентах по массе) в углеродистой (нелегированной) стали, находящейся в химическом равновесии с газом. Это понятие введено для определения и регулирования состава углеродсодержащих атмосфер. Значение потенциала как меры активности среды и вместе с тем концентрации углерода в стали использовано в методах его контроля.  [c.25]

Физическая сущность ультразвуковых методов контроля основана на измерении ультразвуковых полей, изучении и контроле законов распространения ультразвуковых колебаний в различных средах, на непрерывном определении величин скорости распространения или затухания ультразвука в исследуемой среде. По скорости распространения или коэффициенту затухания ультразвука (а этот коэффициент, как уже говорилось, зависит от состава, структуры и физико-химических свойств вещества) мол<но установить молекулярное строение вещества, а также определить концентрацию исследуемых жидких и газообразных сред и наличие в них примесей. Даже самые незначительные примеси в той или иной среде могут заметно изменить величину скорости распространения ультразвуковых волн. Измерение скорости распространения ультразвука позволяет вычислить молекулярную массу, коэффициент линейного расширения, теплоемкость и многие другие характеристики вещества.  [c.110]

В химической промышленности для изготовления сосудов, работающих в щелочной среде под давлением иг выше 1,0 МПа при температуре стенки от —15 до +300°С, могут применяться отливки из щелочеустойчивых чугунов СЧЩ-1 и СЧЩ-2. Из таких отливок изготавливают корпуса, крышки и другие детали аппаратуры, предназначенные для работы с водными растворами NaOH и КОН. Отливки подвергают поплавочному контролю химического состава и механических свойств.  [c.195]

В ближайшие годы следует ожидать существенных сдвигов в вопросах повышения требований к шихтовым материалам и ферросплавам, совершенствования технологии плавки за счет применения аргоно-кислородной продувки в специальном агрегате, ускорения методов контроля химического состава металла, микролегирования, вакуумнрования, использования новых методов разливки (непрерывной, под регулируемым давлением, с экзосмесями), применения переплавов в вакууме, под шлаком и в среде инертных газов (ЭШП, ВДП, ЭЛП, ПДП).  [c.7]

Однако в последнее время наблюдается отчетливая тенденция к координации деятельности разработчиков СО и служб, призванных обеспечивать контроль качества продукции той или иной отрасли или достоверность результатов исследований (например, геологических). Нередко все эти задачи становятся сферой деятельности одной и той же организации, на которую возложены и разработка СО, и метрологическое обеспечение деятельности в некоторой области (в части изучения или контроля химического состава веществ или сред). В таких условиях, исходя из требования максимальной эффективности системы испытаний в целом, важно развивать исследования, позволяющие обеспечить оптимальное сочетание допустимых погрешностей анализа и, например, пробоотбора. Это же относится и к нормированию погрешностей СО, поскольку СО — одна из  [c.105]

Для того чтобы потеициостатическая техника могла служить для ускоренных испытаний на общуЮ или локальную коррозию, очевидно, необходим ускоряющий фактор. Имитация условий службы при использовании потенциостата дли контроля химического потенциала не всегда обязательно будет укорачивать время, требуемое для испытаний. Если применяются ускоряющие факторы, такие как повышенная температура, изменения в химическом составе среды, более высокая движущаяся сила процесса (потенциал), то следует заботиться о том, чтобы механизм реакции или реакций заметно ие изменялся.  [c.604]


Среди электромагнитных приборов для контроля твердости наиболее широко применяют структуроскоп ВС-ЮП. Он предназначен для контроля прутков, труб, уголков, болтов, шпилек и т. п. из сталей 10, 25, 35, 45 (ГОСТ 1050—74), а также из других сталей, для которых может быть установлена однозначная связь электромагнитных характеристик с твердостью. Частота тока питания проходного преобразователя 175 Гц. Принцип работы прибора основан на возбуждении в испытуемом токопроводящем изделии вихревых токов и анализе изменения вторичного поля вихревых токов в зависимости от измеряемого параметра (твердость). Для анализа применяют амплитудно-фазовый метод обработки информации, которая сравнивается с сигналом от эталонного образца. Прибор мо>кет работать в двух режимах — по первой п по третьей гармонике. Трудность нсполь-зоваипя электромагнитных структу-роскопов для контроля твердости заключаете в необходимости отстройки от многих влияющих на результат измерения неконтролируемых параметров (зазор, диаметр, длина изделия, вариации химического состава, удельная электрическая проводимость и т, д.). В настоящее время такие приборы, кап и магнитные, могут быть рекомендованы в качестве индикационных средств, а уточнять их метрологические характеристики можно только после соответствующих экспериментальных статистических исследований для стали выбранной марки.  [c.274]

Оптические постоянные в области собственного поглощения вещества являются фундаментальными константами, с помощью которых можно рассчитать целый ряд физико-химических свойств этого вещества. Зная эти параметры, можно, например, вычислить различные оптические и теплофизические свойства объекта в зависимости от его геометрии, а также условий освещения и наблюдения. Для анализа собственных молекулярных характеристик вещества в общем случае также требуется знание показателей преломления и поглощения. Обе оптические постоянные используются для анализа состава сред в приборах дистанционного контроля. Оптическая локация пленок нефти на воде невозможна без знания соответствующих свойств нефтей и нефтепродуктов в исходном состоянии и результатов воздейсгвия на них воды, атмосферы и солнечной радиации.  [c.4]

Отливки должны подвергаться обязательному контролю по вненшему виду, ра -мерам и химическому составу. Испытания механических свойств, а 1акже другие виды испытаний (гидравлические, испытания на стойкость против коррозии в разных средах, межкристаллитную коррозию, жаростойкость, термостойкость, прочность при  [c.67]

Исследование комплексонного водного режима прямоточных парогенераторов сверхкритического давления было проведено на энергоблоке № 2 Костромской ГРЭС в декабре 1971 г. [Л. 1—3]. Задача исследования определила необходимость весьма большого числа точек отбора проб для организации химического контроля, так как при движении среды по пароводяному тракту происходили непрерывные изменения состава среды, связанные с термическим воздействием на комплексон и комплексонаты. Схема химического контроля включала 20 точек отбора. Для оценки температурного режима труб в наиболее теплонапряженной зоне были установлены температурные вставки — посередине левого бокового экрана на трубах II, III, IV ходов НРЧ и I хода средней радиационной части (СРЧ).  [c.9]

В системе In—Sb образуется конгруэнтно плавящееся химическое соединение InSb, растворимость на основе компонентов и самого интерметаллида также ничтожно мала. Коррозионное поведение 1п,8Ь-сплавов левой половины диаграммы в кислых средах определяется, как и в предыдущем случае, их структурной неоднородностью, т. е. существованием фазовых составляющих типа In—InSb [21]. С изменением соотношения фаз скорость коррозии проходит через максимум , а коррозионный потенциал резко изменяется в положительную сторону (рис. 4.4). Скачок в точности соответствует интерметаллиду InSb. Сплавы же правой части диаграммы корродируют преимущественно с -кислородным контролем, поэтому скорость коррозии мало зависит от их состава.  [c.147]

По электрическим характеристикам материала, полученным расчетным или экспериментальным путем, могут быть определены другие характеристики состава и структуры материала, из которых в первую очередь представляет интерес определение содержания компонентов гетерогенной среды, в частности, коэффициент армирования композитных материалов. Параметры таких гетерогенных систем вычисляют с помощью формул, определяющих средние значения диэлектрической проницаемости через диэлектрические проницаемости компонентов и их объемную или массовую концентрацию (табл. 3). Эти формулы могут быть использованы и для обратной задачи - определения характеристик состава материала, например, коэффициента армирования, пористости, влажности по диэлектрической проницаемости всей композиции и отдельных ее компонентов, а также для определения диэлектрической проницаемости одного из компонентов, если известны остальные параметры. Для более удобного и оперативного получения результатов контроля могут быть составлены номограммы. На рис. 6 приведены номограммы, предназначенные для определения объемного содержания сферических включений (алгоритм нахождения этого параметра - слева) и диэлектрической проницаемости включений (алгоритм справа). При контроле параметров структуры и состава сыпучих материалов, в частности, влажности, основными мешающими факторами являются следующие плотность заполнения ЭП (см. рис. 3), химический состав отдельных частиц, проводимость (минерализованность) воды, степень дисперсности материала, формы связи воды с материалами. Наиболее радикальным средством устранения влияния этих мешающих факторов является применение многопараметровых методов контроля, в основном многочастотных методов и амплитуднофазового разделения.  [c.462]

Защита поверхности от агрессивной среды достигается лишь в том случае, если покрытие химически стойко в данной среде, беспористо и обладает хорошим сцеплением (адгезией) с подложкой. Первое требование соблюдается выбором лака или краски, стойкого в конкретных условиях эксплуатации, с учетом состава агрессивной среды, температуры, возможности облива, требованиями к цвету, экономического эффекта и т. д. Беспористость покрытия обеспечивается числом слоев и определенной толщиной покрытия. Хорошую адгезию покрытия к подложке обеспечивает тщательная подготовка поверхности под окраску (методы будут подробно рассмотрены в дальнейшем). Таким образом, качество и длительность защитного действия покрытия находятся в прямой связи с тщательным соблюдением технологии окрасочных работ и контролем их качества.  [c.193]

Известны многочисленные методики контроля физико-механи-ческих, химических и технологических свойств, многие из которых заимствованы в материаловедении и являются стандартными. Особо тщательному контролю подвергают вновь применяемые материалы и составы. Контролируют прочность, пластичность, твердость, теплоустойчивость, температуру размягчения (или вязкопластичного пастообразного состояния), плавления (или каплепадения), воспламенения, кипения, реологические свойства в вязкопластичном состоянии (вязкость, предельное напряжение сдвига), плотность, зольность, содержание механических примесей, объемную, а также линейную (свободную и затрудненную) усадку, расширение при нагреве, жидкотекучесть, качество поверхности моделей или специальных образцов. Проверяют также химическую активность модельных материалов по отношению к пресс-формам и суспензиям, смачиваемость последними, содержание влаги и воздуха (в пастообразных смесях, приготовляемых с замешиванием воздуха), продолжительность затвердевания и охлаждения в пресс-форме, теплопроводность и теплоемкость, спаиваемость, стабильность свойств при многократных переплавах, микро- и макроструктуру, ликвацию, характер объемной усадки. Осуш,ествляют предусмотренный стандартами на материалы химический контроль, например определяют кислотное число, число омыления, содержание свободных жиров, коксуемость и др. Большое внимание уделяется вопросам токсичности модельных материалов при комнатной температуре и в нагретом состоянии, а также их паров, продуктов разложения (деструкции) и сгорания. При создании новых модельных материалов контролируют состав их отходов и влияние этих продуктов на окру-жаюш,ую среду, а также устанавливают возможность использования в народном хозяйстве отходов модельных составов.  [c.138]


Энергия активации процесса окисления (около 20 ккал/моль) слишком велика для того, чтобы объяснить линейную зависимость в послепереходной период контролем процесса химической реакцией образования окиси иттрия. Поэтому можно предположить, что, достигнув определенной толщины, внешний слой окисной пленки в результате увеличения внутренних напряжений растрескивается, а под ним остается лишь тонкий слой окисла, сохранившего защитные свойства. Внешний слой, частично потерявший диффузионную связь с металлической подложкой, быстро насыщается кислородом, поступающим из внешней среды, до стехиометрического состава и поэтому приобретает белый цвет. В дальнейшем толщина тонкого защитного слоя остается постоянной. Это подтверждается линейным ходом окисления в период после перелома . Увеличение толщины окисной пленки при дальнейшем окислении объясняется ростом растрескавшегося слоя.  [c.78]

Ведение технологических процессов в химической, газо- и нефтехимической промышленности, энергетике во многих случаях основывается на результатах анализа состава жидкостей. Одним из важных моментов работы по охране окружающей среды является контроль за состоянием естественных и искусственных водоемов и анализ сбросных вод промышленных предприятий и населенных пунктов, которые осуществляются также с использованием анализаторов состава жидкостей. К числу наиболее распространенных методов анализа жидкостей, применяемых в промышленных анализаторах, относятся разновидности электрохими-  [c.186]


Смотреть страницы где упоминается термин Контроль химического состава среды : [c.425]    [c.311]    [c.183]    [c.3]    [c.89]    [c.84]    [c.330]    [c.153]    [c.63]    [c.98]    [c.53]    [c.474]   
Защита от коррозии на стадии проектирования (1980) -- [ c.40 , c.42 , c.50 ]



ПОИСК



Контроль химический

Химический состав, контроль



© 2025 Mash-xxl.info Реклама на сайте