Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дисперсия наблюдений

Рассмотрим однофакторный дисперсионный анализ. В самом простом случае дисперсия наблюдений о2 известна заранее и исследуется один переменный фактор х. Пусть в этом случае при изменении фактора х получились результаты наблюдений рь у2,... ..., уп- Найдем выборочную дисперсию 52. Сравним эту дисперсию с генеральной дисперсией сг2 Если 52 от о2 отличается незначимо, то и влияние фактора х нужно признать незначимым. Если же 52 отличается значимо от сг2 то это может быть вызвано только влиянием фактора х, которое следует признать значимым. Факт значимости устанавливается по критерию Фишера Р=5 1а . Задавшись уровнем значимости а, найдем табличное значение Рг-а-Если Р<С.р1-а, то дисперсии 52 и о2 однородны и X не влияет на у. Если Р>р1-а, то 52 и сг2 неоднородны и X влияет на у на фоне помех.  [c.106]


Математическая модель, основанная на установлении связей между входными и выходными параметрами путем применения экспериментально-статистических методов, представляется в виде уравнения регрессии, описывающего корреляционную зависимость между выбранным показателем качества сварного соединения и входными параметрами Хрп, являющимися случайными величинами [7]. Для количественной оценки связи используется метод регрессионного анализа, основной предпосылкой применения которого является требование одномерного нормального распределения изучаемых параметров и выбранного показателя качества, однородность выборочных оценок дисперсий наблюдений. При этом независимые переменные должны быть измерены с погрешностью значительно меньшей, чем допустимая при определении критерия качества Y .  [c.16]

При дисперсионном анализе степень влияния факторов оценивается в предположении, что дисперсия выходного параметра складывается из дисперсий, обусловленных анализируемыми факторами, и дисперсии от неучтенных случайных факторов (дисперсия ошибки). Принимаются также допущения, что ошибки испытаний распределены по нормальному закону, анализируемые факторы влияют только на средние значения выходного параметра, испытания равноточны, а дисперсия наблюдений остается постоянной. Чтобы оценить значимость влияния какого-либо фактора, необходимо сравнить соответствующую ему выборочную дисперсию с дисперсией от влияния неучтенных факторов по критерию Фишера. Если рассчитанное значение критерия Фишера меньше табличного, значит, влиянием данного фактора можно пренебречь.  [c.159]

Диаграмма циркуляции 185 Дисперсия наблюдений 34 Доверительная вероятность 33 Дымосос 14  [c.316]

Метод скрещенных приборов. Первые серьезные опыты по изучению аномальной дисперсии были выполнены Кундтом и Вудом. Они использовали усовершенствованный метод скрещенных призм Ньютона. Экспериментальное наблюдение аномальной дисперсии  [c.265]

Соединение электронных явлений и электромагнитной теории света является заслугой Лоренца — крупнейшего физика, работавшего на рубеже XIX и XX вв., хотя появлению этой фундаментальной теории предшествовал ряд наблюдений, опытов и попыток их обобщения. Создание электронной теории дисперсии послужило шагом к развитию феноменологической электромагнитной теории путем дополнения ее анализом микропроцессов, происходящих в веществе под действием светового поля. Такое описание приводит к хорошему согласию эксперимента и теории, базирующейся на представлениях классической физики. Вопрос в том, как трансформируются введенные понятия при квантовом описании процессов в веществе, требует обсуждения.  [c.135]


Первые экспериментальные исследования этой зависимости принадлежат Ньютону, который произвел (1672 г.) знаменитый опыт с разложением белого света на цвета (спектр) при преломлении в призме. Наблюдение преломления в призме и доныне остается одним из удобных способов определения показателя преломления вещества призмы и изучения зависимости показателя преломления от цвета (дисперсия).  [c.313]

Разность показателей преломления Пд — Пе может быть положительной и отрицательной в зависимости от материала. Кроме того. По И Пе зависят от длины волны (дисперсия двойного лучепреломления), вследствие чего при наблюдении в бело.м свете искусственно анизотропное тело при скрещенных поляризаторах оказывается пестро окрашенным. Распределение окраски может служить хорошим качественным признаком распределения напряжений кроме того, возникновение окрашенных полей оказывается более чувствительным признаком проявления анизотропии,/чем простое просветление, имеющее место при монохроматическом свете.  [c.526]

Дисперсия света. Методы наблюдения и результаты  [c.540]

В настоящее время нам известно, что зависимость между показателем преломления и дисперсией может быть весьма сложной, причем возрастание дисперсии не всегда идет рука об руку с увеличением преломления, хотя обычно подобный параллелизм наблюдается. Даже общий ход дисперсии — увеличение показателя преломления при уменьшении длины волны — не всегда имеет место. Леру (1862 г.), наблюдая преломление в призме, наполненной парами йода, обнаружил, что синие лучи преломляются меньше, чем красные (другие лучи поглощаются йодом и от наблюдения ускользают). Эту особенность Леру назвал аномальной дисперсией — название, удержавшееся и до нашего времени. Аномальный ход дисперсии наблюдается и в жидкостях исследуя спектр при помощи призмы, наполненной раствором фуксина, обнаружим, что фиолетовые лучи отклоняются меньше, чем красные.  [c.541]

Рис. 28.3 воспроизводит в форме кривой результаты наблюдения над дисперсией раствора цианина в области полосы поглощения от Л до В показатель преломления уменьшается, т. е. имеет аномальный ход. Общий ход показателя преломления на некотором расстоянии от полос поглощения соответствует обычному нормальному ходу дисперсии медленное увеличение показателя преломления по мере уменьшения длины волны. Такой же ход имеет показатель преломления для прозрачных тел (стекло или кварц, например) на всем протяжении видимого спектра. Однако по мере продвижения в ультрафиолетовую или инфракрасную части спектра показатель  [c.542]

На пути лучей была расположена горелка, в пламя которой вводились пары натрия. На экране обнаружилось не только появление темной полосы в желтой части спектра, характерной для поглощения света в парах натрия, но и загиб спектральной полоски в разные стороны по бокам области поглощения. В этой случайно наблюденной картине Кундт сразу узнал явление аномальной дисперсии. Конусообразный столб паров натрия, поднимавшийся над горелкой, играл роль призмы с горизонтальным преломляющим ребром (основание внизу), скрещенной с первой стеклянной призмой, стоявшей вертикально. Как видно из рис. 28.4, более длинноволновая часть а преломляется сильнее, чем более коротковолновая область б, для которой показатель преломления даже меньше единицы.  [c.543]

На рис. 28.10 представлены одновременно кривые, выражающие зависимость п и пу от со вблизи линии поглощения в газе при низком давлении. В соответствии с наблюдениями Кундта область абсорбции и область аномальной дисперсии совпадают друг с другом.  [c.557]

Теоретический смысл этих явлений легко понять. Под действием магнитного поля меняются собственные периоды колебания атомов и, следовательно, положение линий поглощения. Наблюдения в продольном направлении показывают, что собственные частоты, соответствующие правому и левому вращению, смещаются в разные стороны. Этим обстоятельством устанавливается связь между явлением Зеемана и явлением Фарадея. Так как показатель преломления зависит от близости частоты исследуемой волны к собственным частотам вещества (кривая дисперсии), то, следовательно, под действием магнитного поля изменяется и показатель преломления, причем различно для волн данной частоты, поляризованных по правому и левому кругу.  [c.629]


Первые экспериментальные исследования дисперсии света принадлежат Ньютону (1672). Им был применен так называемый метод скрещенных призм (метод скрещенных дисперсий). Белый свет, проходя через вертикальную щель L и две призмы Л] и Лг, преломляющие ребра которых взаимно перпендикулярны, собирается с помощью линз 0 и Ог на экране наблюдения (рис. 21.1). При наличии только одной призмы А с вертикальным преломляющим ребром на экране получился бы горизонтальный сплошной спектр, изображенный  [c.81]

Для прозрачных веществ показатель преломления п монотонно возрастает с уменьшением длины волны А (нормальная дисперсия). Дальнейшие исследования показали, что возможен и обратный ход дисперсии, когда показатель преломления уменьшается с. уменьшением длины волны (аномальная дисперсия). Было установлено, что аномальная дисперсия тесным образом связана с поглощением света все вещества, для которых наблюдается аномальная дисперсия, сильно поглощают его в этой области (рис, 21.2). Показатель преломления вблизи полосы поглощения меняется настолько быстро, что значение его со стороны более длинных воли (точка а) больше, чем со стороны коротких (точка Ь). Аномальный ход показателя преломления, т. е. его уменьшение с уменьшением длины волны, имеет место внутри полосы от точки а к точке Ь, где наблюдения очень затруднены вследствие поглощения света.  [c.82]

Пусть мы определили выборочную дисперсию /3 для некоторого числа наблюдений тъ и хотим определить для заданного нами доверительного интервала + Х соответствующую ему доверительную вероятность.  [c.49]

Среднее квадратическое отклонение результата наблюдения Средняя квадратическая (квадратичная) погрешность (ошибка) единичного измерения. Среднеквадратичная погрешность (ошибка) стандарт измерений Параметр функции распределения результатов наблюдений, характеризующий их рассеивание и равный корню квадратному из дисперсии результата наблюдения (с положительным знаком)  [c.95]

При ограниченном числе наблюдений можно найти только одну оценку среднего квадратического отклонения результата наблюдения, обычно принимаемую равной корню квадратному из оценки дисперсии результата наблюдения  [c.95]

Доказывается, что весовые коэффициенты должны быть обратно пропорциональны дисперсиям отдельных наблюдении  [c.225]

Дисперсия параметра у при учете всех наблюдений может быть подсчитана по формуле  [c.226]

Такие измерения Nf для паров цезия были выполнены С. Э. Фришем и И. П. Богдановой и сравнены с измерениями по методу аномальной дисперсии, Оба способа привели к результатам, совпадающим в пределах ошибок наблюдений.  [c.417]

Эллиптическим дефектам свойственна дисперсия фазовой скорости волны обегания на различных участках эллипса. На рис. 1.28 приведены зависимости нормированной фазовой скорости Сф/Сд волны обегания от угла наблюдения ф для Q = 0,4 [36]. Волновым параметром кривых является величина Ы (/ — большая полуось эллипса). Минимальная скорость наблюдается в областях с минимальным радиусом кривизны, т. е. при ср = О и 180°. С приближением к областям с ф = 90 и 270 радиус кривизны возрастает и соответственно увеличивается фазовая скорость, не превышая, однако, скорости волны Релея Сд. Чем меньше волновой параметр, тем больше отношение скоростей Сф/Сд.  [c.45]

Следует подчеркнуть, что значения рассматриваемых параметров, полученные по ограниченному числу участков всего нескольких профилей, далеко не всегда достаточны для надежных инженерных расчетов. Выше отмечалось, что в качестве результатов определения параметров используются наибольшие или средние значения из рядов наблюдений. По этим исходным индивидуальным наблюдениям можно получить эмпирические оценки дисперсий и с их помощью, задавшись соответствующими вероятностями, судить с нужной степенью достоверности о действительных предельных и средних для всей испытуемой поверхности значениях определяемых параметров.  [c.203]

При наличии препятствий, отражений и вообще в неоднородных средах сигналы приходят в точку наблюдения многократно отраженными и искаженными по сравнению со своим первоначальным видом. Из-за чрезвычайной сложности машинных и присоединенных конструкций с точки зрения их акустического расчета обычно не удается теоретически определить необходимые времена запаздывания, а иногда это сделать нельзя принципиально. Поэтому для полного анализа акустических сигналов машин необходимо изучение его характеристик в широком диапазоне изменений задержек времени. Все характеристики, относящиеся к двум или нескольким реальным сигналам машин и механизмов (совместные распределения, линии регрессии, коэффициенты корреляции, дисперсии, корреляционные отношения), существенным образом зависят от задержек времени.  [c.76]

Проведенные исследования показывают, что при коэффициенте вариации сроков службы, меньшем 0,35, вполне возможна замена распределения Вейбулла нормальным с теми же математическим ожиданием и дисперсией, Ошибка в вычислении числа восстановлений или интенсивности их при такой замене практически отсутствует. Кроме того, как показывают наблюдения, сроки службы многих машин (автомобилей, тракторов, комбайнов и др,) имеют распределения, близкие к нормальному.  [c.31]

Увеличенное рассеяние признака качества. Эта разновидность ненормальностей при механической обработке нередко состоит в уменьшении жесткости технологической системы станок—приспособление—инструмент—деталь, вследствие чего на признаке качества в большей степени сказываются дисперсии многочисленных случайных слагаемых вектора усилия обработки. Но нередко причиной могут оказаться нарушения допуска на припуски, загрязнение базисных поверхностей и др. Моменты возможного возникновения ненормальностей а) обычно возникает постепенно вследствие износа (засорения) станка или приспособления б) может возникнуть при наладке, например в результате использования пружинящих подкладок, установки резца с большим вылетом и пр. в) может возникнуть с доставкой очередной партии заготовок с чрезмерной дисперсией припуска. Форма проявления — увеличение среднего квадратического отклонения мгновенного распределения х, о чем судят по различиям между наблюденными значениями признака качества х в выборке (интуитивно или опираясь на математико-статистические методы).  [c.33]


В связи с ошибкой измерения различают действительные Жд и наблюденные значения признака качества х. Включение этих понятий в модель не оправдывается небольшим уточнением. Вообще же Од + Оу = Он> — дисперсия ошибки измерения. Оперативные характеристики следует вычислять исходя из Он, а вероятности брака — исходя из ад.  [c.42]

Дуализм свойств света. При исследовании законов фотоэффекта в опытах по наблюдению рассеяния фотонов на электронах обнаруживается квантовая, корпускулярная природа света. Но вместе с тем свет обнаруживает способность к дифрагсции, интерференции, преломлению, отражению, дисперсии, поляризации и все эти явления полностью объясняются на основе представлений о свете как электромагнитной волне.  [c.304]

В действительности мы всегда имеем более или менее сложный импульс, ограниченный во времени и в пространстве. При наблюдении такого импульса мы можем выделять какое-нибудь определенное его место, например, место максимальной напряженности того электрического или магнитного поля, которое представляет собой электромагнитный импульс. Скорость импульса можно отождествить со скоростью распространения какой-либо его точки, например, точки максимальной напряженности поля. При этом, однако, надо предполагать, что импульс нащ сохраняет при распространении свою форму или во всяком случае деформируется достаточно медленно или периодически восстанавливается. Для выяснения этого обстоятельства мы можем представить импульс как наложение бесконечно большого числа близких по частоте монохроматических волн (представление импульса в виде интеграла Фурье). Если, например, все эти монохроматические волны разной длины распространяются с одной и той же фазовой скоростью (среда не имёет дисперсии), то с той же скоростью перемещается и импульс как целое, сохраняя неизменной свою форму.  [c.428]

Световая волна в вакууме представляет собой переменное электромагнитное поле высокой частоты, распространяющееся с постоянной скоростью (с = 2,9979-10 см/с), не зависящей от частоты. Последнее обстоятельство может считаться установленным с большой степенью достоверности наблюдениями над астрономическими явлениями. Так, исследование затмения удаленных двойных звезд не обнаруживает никаких аномалий в спектральном составе света, доходянщго до нас в начале н конце затмений. Между тем затмение звезды или выход ее из тени своего спутника означает обрыв или начало распространения светового импульса, далеко не монохроматического и могущего рассматриваться как результат наложения многих монохроматических излучений. Если бы скорость этих излучений в межпланетном пространстве была различна, то импульс должен был бы дойти до нас значительно деформированным. Например, предположим для простоты, что этот импульс можно уподобить двум почти монохроматическим группам, синей и красной , и примем, что скорость распространения красной группы больше, чем синей мы должны были бы наблюдать при начале затмения изменение цвета звезды от нормального к синему, а при окончании его — от красного к нормальному. При огромных расстояниях, отделяющих от нас двойные звезды, даже ничтожная разница в скоростях должна была бы дать заметный эффект. В действительности же такой эффект не имеет места. Так, наблюдения Aparo над переменной звездой Алголь привели его к заключению, что разность между скоростью распространения красного и фиолетового излучения во всяком случае меньше одной стотысячной величины самой скорости. Эти и подобные наблюдения заставляют признать, что дисперсия света в межпланетном пространстве ) отсутствует. При  [c.538]

Систематические исследования Кундта, который использовал для своих опытов метод скрещенных призм, установили важный закон, согласно которому явление аномальной дисперсии тесно связано с поглощением света все тела, обладающие аномальной дисперсией в какой-либо области (рис. 28.2), сильно поглощают свет в этой области. Показатель прело.млеиия вблизи полосы поглощения меняется настолько быстро, что значение его со стороны более длинных волн (точка М) больше, чем со стороны коротких (точка Л ). Аномальный ход показателя преломления, т. е. его уменьшение при уменьшении длины волны, имеет место внутри полосы от точки М к N, где наблюдения очень трудны вследствие поглощения света.  [c.541]

Выше уже отмечались исследования С. И. Вавилова зависимости коэс1х ициента поглощения от интенсивности поглощаемого света (см. гл. ХХУИ1, ХЬ). В книге Микроструктура света , обобщая свои наблюдения, относящиеся к 20 гг., и последующие опыты, Вавилов писал Нелинейность в поглощающей среде должна наблюдаться не только в отношении абсорбции. Последняя связана с дисперсией, поэтому скорость распространения света в среде, вообще говоря, также должна зависеть от световой мощности. По той же причине в общем случае должна наблюдаться зависимость от световой мощности, т. е. нарушение принципа суперпозиции, и в других оптических свойствах среды — в двойном лучепреломлении, дихроизме, вращательной способности и т. д. . Последующее развитие нелинейной оптики, об>условленное экспериментальным исследованием распространения лазерного излучения, не только подтвердило общие соображения Вавилова о мно-гообрази И возможных нелинейных явлений, но и привело к обнаружению всех перечисленных им конкретных эффектов. Поэтому Вавилов по праву признан основоположником нелинейной оптики.  [c.820]

Опыт показывает, что разность показателей преломления По—tie, являющаяся мерой возникшей анизотропии, пропорциональна давлению F, которому подвергается деформируемое тело По—tie = kF, где k — константа, определяемая свойствами вещества. Разность фаз, которую приобретут лучи при прохождении слоя d в веществе, равна ф=(2я Д)(/го—tie)=gFd, где g=2nklX — новая константа. В зависимости от рода вещества константа g может быть положительна или отрицательна. Кроме того. По и Пе зависят от длины волны (дисперсия двойного лучепреломления), поэтому при наблюдении в белом свете просветленное поле оказывается окрашенным, аналогично тому, как оно окрашено при наблюдении хроматической поляризации, даваемой естественными кристаллами.  [c.64]

Оценка информации о надежности при наличии различных источников. При построении модели прогноза необходимые данные о закономерностях процессов повреждения или об изменении во времени выходных параметров изделия могут быть получены-из различных источников информации. Например, аналитические зависимости для скорости процесса v можно получить на основании исследования физики процесса, из кратковременных натурных испытаний и из сферы ремонта и эксплуатации. При этом данные о математическом ожидании и дисперсйи процесса, полученные из разных Источников, как правило, не совпадают. Спрашивается, какое значение у следует принять при расчете и прогнозировании надёжности, используя все Имеющиеся источники информаций о данном процессе Этот сложный вопрос, который может быть предметом специального Статистического исследова- ния, в первом приближении можно решить на основе теории неравноточных наблюдений, рассмотренной в работе [1831. Неравноточными наблюдениями одного и того же объекта г/ называются такие, каждое Из которых им еет свою точность, т. е. характеризуется различными диспе рсиями.  [c.225]


Смотреть страницы где упоминается термин Дисперсия наблюдений : [c.130]    [c.169]    [c.94]    [c.4]    [c.212]    [c.570]    [c.81]    [c.72]    [c.426]    [c.244]    [c.32]    [c.156]    [c.82]    [c.55]   
Испытание и наладка паровых котлов (1986) -- [ c.34 ]



ПОИСК



Дисперсия

Дисперсия и ошибка косвенных наблюдений

Дисперсия света. Методы наблюдения и результаты

Методы наблюдения дисперсии света

Наблюдение



© 2025 Mash-xxl.info Реклама на сайте