Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Источник двойной

Если металл с катионным двойным электрическим слоем, соответствующим отрицательному потенциалу металла относительно раствора, подвергнуть анодной поляризации, т. е. отнять у него с помощью внешнего источника постоянного электрического тока  [c.161]

Кинематические схемы выполняются в соответствии с требованиями ГОСТ 2.703—68 (СТ СЭВ 1187—78). На этих схемах изображают сплошными основными линиями толщиной 2з — валы, оси, стержни, шатуны, кривошипы и т. п. сплошными тонкими линиями толщиной 5/2 — элементы, изображенные упрощенно в виде контурных очертаний, зубчатые колеса, червяки, звездочки, шкивы, кулачки и т. п. сплошными тонкими линиями толщиной 5/3 — контур изделия, в который вписана схема штриховыми линиями толщиной 5/2— кинематические связи между сопряженными звеньями пары, вычерченными раздельно двойными штриховыми и линиями толщиной 5/2 — кинематические связи между элементами или между ними и источником движения через немеханические (энергетические) участки тройными штриховыми линиями толщиной 5/2 — расчетные связи между элементами.  [c.173]


В пользу того, что скорость света не зависит от скорости источника, говорят и некоторые астрономические наблюдения (например, над двойными звездами), а также другие опыты, поставленные позднее специально с целью проверки этого факта.  [c.176]

Принцип образования изображения в системе может быть рассмотрен как процесс двойной дифракции. Первая дифракция происходит на объекте 2, освещаемом плоской монохроматической волной, образуемой когерентным источником света /. Объект 2 расположен в передней фокальной плоскости объектива 3, который образует в своей задней фокальной плоскости 4 пространственный спектр объекта (т. е. осуществляет преобразование Фурье объекта). В плоскости голограммы 4, которая одновременно является передней фокальной плоскостью второго объектива 5, находится мультиплицирующий элемент, представляющий собой голограмму набора точечных источников, число и расположение которых соответствует желаемому числу и расположению размноженных изображений. В результате в плоскости голограммы 4 имеем произведение двух спектров Фурье объекта и набора точечных источников. Второй объектив 5 в свою очередь осуществляет преобразование Фурье объекта, находящегося в его фокальной плоскости. Как следствие. этого в плоскости изображения 6 получаем совокупность изображений исходного объекта, причем линейное увеличение системы 7 и размер изображений определяются соотношением фокусов объективов системы 7==/,//,. Очевидно, что размеры отдельных модулей могут быть большими (более 5—10 мм), они ограничиваются лишь полем изображения второго объектива 5. Это является большим преимуществом системы.  [c.63]

Наконец, отдельно надо упомянуть наиболее совершенную по постановке работу группы By. Особенностью этой работы является использование искровой камеры, которая позволяет получать следы обоих электронов 2р-распада, т. е. проверять третий признак двойного р-распада—вылет обоих электронов из одной точки источника ( из одного и того же ядра ).  [c.240]

Рис. 45.27. Спектр излучения Лебедь Х-3. Источник проявляет активность во всех диапазонах электромагнитных волн от радио- до у Излучения сверхвысоких энергий. Входит в состав тесной двойной системы (орбитальный период 4,8 ч), находящейся на расстоянии 10 КПК [45] Рис. 45.27. <a href="/info/22667">Спектр излучения</a> Лебедь Х-3. Источник проявляет активность во всех диапазонах <a href="/info/12459">электромагнитных волн</a> от радио- до у Излучения сверхвысоких энергий. Входит в состав тесной <a href="/info/373839">двойной системы</a> (орбитальный период 4,8 ч), находящейся на расстоянии 10 КПК [45]

ДРУГИЕ ВИДЫ ДВИЖЕНИЯ ДИСЛОКАЦИИ ПРИ СКОЛЬЖЕНИИ. Рассматривая дислокационную природу скольжения, следует иметь в виду многообразие конкретных видов движения дислокаций. Выше были рассмотрены простейшие случаи движения винтовой краевой и смешанной дислокаций, описаны особенности движения и пересечения растянутых дислокаций, дано описание генерации источника Франка—Рида. Рассмотрено двойное поперечное скольжение. Ниже, подчеркивая разнообразие видов движения (скольжения) дислокаций, дается описание движения дислокаций с порогами, с помощью парных перегибов, с особыми точками и пр.  [c.123]

Двойное торцевое уплотнение (рнс. 7.23,6) представляет собой конструкцию из двух одинарных уплотнений, образующих замкнутую камеру, в которую подводится чистая запирающая жидкость от внешнего источника с давлением рз, превыщающим уплотняемое давление р. Запирающая жидкость нередко выполняет также функцию охлаждающей.  [c.181]

Поскольку закономерности процесса деформационного упрочнения, согласно современным представлениям [66, 233, 254], сводятся к закономерностям процесса размножения и взаимодействия дислокаций, то и преобладание винтовых дислокаций в структуре ОЦК-металлов требует учета особенностей размножения винтовых дислокаций. Для винтовых дислокаций вместо дискретных источников рассматривают обычно двойное поперечное скольжение. Авторы [254] отмечают, что при этом элементом, контролирующим процесс упрочнения, является не отдельная дислокация, а линия скольжения, а сам подход требует подробного теоретического и экспериментального исследования геометрии двойного поперечного скольжения и его роли в эволюции дислокационной структуры и механизмах упрочнения ОЦК-металлов.  [c.104]

Изменение заряда поверхности металла происходит не только при его электрохимической поляризации (например, от внешнего источника), но и вследствие изменения физико-механического состояния поверхности, ведущего к образованию внутреннего двойного слоя при пластической деформации и сдвигу заряда в сторону положительных значений (гл. П), что подтверждено экспериментально (см. рис. 31).  [c.171]

Широкое внедрение электромобилей взамен используемых сейчас автомобилей, работающих на химически связанной энергии (например, на бензине), могло бы дать двойную выгоду. Сократилось бы общее потребление нефти и было бы ограничено распространение такого источника загрязнения воздуха, каким является двигатель внутреннего сгорания. Однако даже если бы современные модели автомобилей с двигателями внутреннего сгорания были заменены электромобилями, проблема охраны воздушного бассейна от загрязнения осталась бы. Дело в том, что для зарядки автомобильных аккумуляторов (батарей, топливных элементов) понадобится увеличить выработку электроэнергии на электростанциях Однако электростанции являются крупными и стационарными источниками энергии и на них существенно легче осуществлять меры по охране воздушного бассейна от загрязнения продуктами сгорания топлива (см. гл. 13).  [c.243]

Минимальной инфильтрации воздуха можно добиться путем качественного выполнения строительных работ. В современных зданиях за час сменяется от половины до более чем двойного объема воздуха, а следовало бы иметь такую вентиляцию, которая не допускала бы полной смены воздуха менее, чем за 5 ч. В административных зданиях и помещениях, где разрешено курение, темпы воздухообмена должны быть большими. Дома можно было бы строить практически с нулевым воздухообменом, но вряд ли это желательно. Свежий воздух в помещениях необходим, даже если при этом и должна расходоваться энергия. Но надо при этом помнить, что каждый находящийся в комнате человек представляет собой источник теплоты мощностью в среднем 100 Вт  [c.261]

Но если АА и ВВ представляют собой два е,циничных двойных источника с одинаковой фазой, то скорость в Л в направлении ВВ, обусловленная источником АА, та же, что и скорость в Л в направлении АА, обусловленная источником ВВ. Эти и другие результаты подобного характера можно также получить непосредственным применением общего принципа 108. Этих примеров достаточно, чтобы показать, что, прилагая принцип взаимности, необходимо учитывать характер источников. Двойной источник, расположенный в открытом пространстве, не слышен из точки, расположенной в его экваториальной плоскости, но из этого не следует, что простой источник в экваториальной плоскости не слышен из положения ДВ0Й1ЮГ0 источника. Этот принцип, я думаю, позволяет объяснить любопытный опыт Тиндаля ), в котором имеет место  [c.148]


Эхо, слышимое при отражении звука от стены, можно рассматривать как звук, пришедний от мнимого источника, расположенного в симметричной точке позади стены, при условии, что стена была бы убрана. Запаздывание эхо относительно исходного звука — это как раз время, требующееся для пробега звука от мнимого источника (двойное расстояние до стенки).  [c.127]

На рис. 29.3, г гюказан пример логического пневматического элемента. Это мембранное реле универсальной системы промышленной пневмоавтоматики (УСЭППА), имеющие четыре разобщенных камеры, одна из которых всегда находится под давлением местного источника сжатого воздуха. Эта область на рис. 29.3, г отмечена двойной штриховкой.  [c.607]

На рис. 6.19 показана кинематическая схема вертикально-фрезерного станка с ЧПУ модели 6Р13ФЗ. Механизм главного движения станка представляет собой обычную коробку скоростей, в которой 18 частот вращений шпинделя получают переключением двух тронных и одного двойного блока 19—22—16 37—46—26 и 82—19). Источником движения служит электродвигатель /VIj (N = 7,5 кВт, п = 1450 об/мин). Диапазон частот вращення шпинделя 40— 2000 об/мин.  [c.292]

Фулмер и Вирц измери.ли скорости отдельных частиц в моделированных продуктах истечения из сопла ракетного двигателя [245]. Чтобы получить интенсивные, строго выдержанные по длительности импульсы света, они использовали в качестве источника света криптоновую вспышку с двойным импульсом. Изображения частиц фиксирова.тись на пленке в виде парных штрихов.  [c.324]

Проекторы предназначены для контроля н измерения деталей, спроецированных в увеличенном масштабе на экран. Проекторы могут работать в проходящем и отраженном свете. Их используют главным образом для контроля изделий со сложным профилем шаблонов, плат, лекал, зубчатых колес, HiTaMnoBaHHbix детален, фасонных резцов и т. п. Свет от источника (рис. 5.17, а и б) через конденсор 1 параллельным пучком направляется на проверяемую деталь 2. Объективом 3 действительное обратное изображение детали, через систему зеркал 5—6 проецируется на экран 4. Контролируемое изображение детали на экране можно проверять различными методами, например сравнения с вычерченным в увеличенном масштабе номинальным контуром с двойным контуром, вычерченным в соответст-вки с 1]редельными положениями годного профтля показаний от-счетных устройств проектора с помощью масштабных линеек совмещением противоположных контуров детали. В соответствии с ГОСТ 19795—82 выпускают проекторы типа ПИ с экраном диаметром до 250 мм 250—400 мм и свыше 400 мм. Часовой проектор ЧП (рис. 5.17, б) состоит из осветителя I, сменных конденсоров 3, стола 5 с продольным и поперечным винтами 4 п 9 (цена деления  [c.129]

В работе [2221 описана система лучистого отопления экспериментального дома, расположенного иод Бостоном (США). Источником энергии является солнечная радиация. На рис. 8-44 представлена схема этого дома. Гелиоприемники типа горячий ящик с двойным остеклением располагаются на обоих скатах крыши (этим предусматривается увеличение времени воздействия радиации). Лучевоспринимаюшая поверхность состоит из медных пластин, имеющих покрытия с высокой поглощательной способностью, к внутренней стороне которых приварены через каждые 150 мм трубки. Теплоносителем и аккумулятором теила в системе является вода, которая прокачивается насосом через трубки гелиоириемника и в нагретом состоянии поступает в бак. В дневное время циркуляция воды происходит непрерывно, так как температура гелиоприе.мника всегда выше температуры воды в баке. Ночью или в облачную погоду солнечный коллектор охлаждается и движение воды из бака к коллектору автоматически прекращается. Вода из труб коллектора перекачивается в бак, благодаря чему исключается возможность замораживания труб и утечки теила из бака. Циркуляция воды из бака по змеевикам системы лучистого отопления осуществляется с помощью второго на-  [c.236]

Наиболее, важной особенностью эффекта Керра, обусловившей широкое его применение, является весьма малая инерционность. Это свойство ячейки Керра проверялось в остроумных опытах (схема опытов изображена на рис. 3.11), а в последующем детально исследовалось в большом количеспве экспериментов. Источник света (конденсированная искра) и конденсатор Керра получают напряжение от одного источника тока. Как только произошел пробой газа между электродами (искра) и возник связанный с этим пробоем импульс света, начинает постепенно исчезать эффект Керра, что вызвано релаксацией дипольных моментов. молекул. Системой зеркал можно удлинить путь от источника света до ячейки Керра. Опыты показали, что, пока свет проходит расстояние 400 см, все следы двойного лучепреломления успевают исчезнуть. Отсюда была найдена инерционность процесса, характеризуемая средним временем х 10 с. В последующих прецизионных опытах было учтено время пробоя газа и была установлена еще меньшая инерционность эффекта (г Г 10 с). Таким образом, открылась возможность создания практически безынерционного оптического затвора и тем самым были заложены основы физики очень быстрых процессов ( нано-секундная техника 1 не = 10 с).. За последнее время эта техника приобрела особое значение в связи с возможностью получения очень больших мощностей светового потока в лазерах. Действительно, если возбудить в твердотельном лазере импульс света с энергией 10 Дж и продолжительностью 10" с, то мощность такого импульса составит 10 кВт. Если же с помощью какого-либо быстродействующего устройства (например, ячейки Керра) заставить высветиться эту систему за время порядка 10 с, то мощность импульса составит уже 1 ГВт. Такие гигантские импульс обладают некоторыми совершенно новыми физическими свойствами. Использование подобных сверхмощных световых потоков играет большую роль в области бурно развивающейся нелинейной оптики, а также при решении различных технических задач.  [c.123]


Впоследствии Фабри и Бюиссон (1919 г.) произвели подобные измерения более простым способом, использовав большую разрешающую силу интерференционного спектроскопа. Источником света служила охлаждаемая ртутная лампа, излучение которой отражалось от краев бумажного диска, вращающегося на центрифуге, причем линейная скорость края диска достигала 100 м/с спектральная линия, отраженная от двух противоположных краев вращающегося диска, давала двойную линию, надежно разрешаемую интерференционным прибором.  [c.439]

Эффект Зеемана лежит в основе объяснения двух главных магнитооптических явлений — магнитного вращения плоскости поляризации (эффект Фарадея) и магнитного двойного лучепреломления (эффект Коттона — Мутона). Изучение эффекта Зеемана на спектральных линиях атомов в видимой и ультрафиолетовой областях сыграло большую роль в развитии учения о строении атома, особенно в период, последовавший за созданием теории Бора. В настоящее время исследование эффекта Зеемана на спектральных линиях атомов представляет собой один из важных методов определения характеристик уровней энергии атомов и значительно облегчает интерпретацию сложных атомных спектров. Изучение зеема-новского расщепления спектральных линий позволяет также получать ценные сведения о магнитных полях, в источниках света, например при исследовании Солнца.  [c.102]

На опыте заметного смещения интерференционных полос обнаружено не было. Смещения носили случайный характер и не превышали 0,02 полосы, что лежало в пределах ошибок наблюдений. Таким образом, опыты Майкельсона не подтвердили теорию неподвижного эфира. Они могли бы быть истолкованы, как доказательство полного увлечения эфира телами, но тогда они вступили бы в противоречие с результатами опыта Физо. Было предпринято несколько попыток объяснить отрицательный результат опытов Майкельсона, не отказываясь при этом от представлений о мировом эфире. Одной из них была баллистическая гипотеза Ритца, согласно которой к скорости светового луча, испускаемого движущимся источником, добавляется скорость самого источника, подобно тому, как к скорости снаряда, выпущенного из пушки движущегося корабля, добавляется скорость самого корабля. Однако баллистическая теория была отвергнута, так как она встретилась с неразрешимыми трудностями при объяснении опытов типа Физо, эффекта Доплера и результатов наблюдений за двойными звездами.  [c.209]

Компактные звезды, входящие в состав тесных двойных систем, могут проявлять себя как рентгеновские источники [33]. Источником энергии служит аккреция вещества, перетекающего с нормальной звезды на компактную. Светимость аккрецирующих источников L,  [c.1213]

Транзиентные (новоподобные) источники — системы, в которых аккреция происходит не постоянно в результате источник то появляется, то исчезает с интервалом от нескольких месяцев до нескольких лет. Это может быть связано с эллиптичностью орбиты релятивистской звезды в двойной системе или с пульсациями нормальной звезды, что приводит к сильным колебаниям скорости аккреции. Среди транзиентных источников есть рентгеновские пульсары и барстеры.  [c.1214]

Радиогалактики —элпштт скж (как правило) галактики со светимостью в радиодиапазоне 10 — 10 Вт. Большая часть имеет двойную структуру симметрично относительно центрального источника на расстоянии до нескольких мегапарсек расположено два радиоизлучающих облака. Спектр радиоизлучения обычно степенной (рис. 45.47).  [c.1224]

Обратимся теперь к самому простому случаю обтекания ветровым потоком одиночного здания прямоугольного сечения высотой Н (рис. 162). Критической точкой отрыва является наветренный угол С. Наблюдая за таким течением непосредственно в гидролотке или на аэродинамической модели, а также по материалам фото- и киносъемок получаем следующую картину течения. Основной поток обтекает как бы некоторое тело овальной формы это движение можно считать потенциальным. Соответствующий спектр течения получают методами гидроаэродинамики невязкой жидкости, в частности, как комбинацию плоскопараллельного потока, источника и двух стоков ( 18). Границей указанного воображаемого тела является некоторая поверхность раздела, которая на рис. 162 показана линией С — С.. Эта линия сначала поднимается от точки отрыва, достигая приб)1изительно двойной высоты на расстоянии порядка 2,5Я, а затем постепенно опускается, пересекая плоскость отметки преграды на расстоянии около 8Я.  [c.305]

Примером логического пневматического элемента пторой группы может служить мембранное реле универсальной системы элементов промышленной пневмоавтоматики (сокращенно УСЭППА). Это реле имеет четыре разобщенных камеры, одна из которых находится под давлением местного источника сжатого воздуха, которое меньше давления в напорной линии (на рис. 193, d эта камера отмечена двойной щтриховкой). Подвижная часть реле выполнена в виде штока с тремя мембранами, причем средняя мембрана имеет больший диаметр. В зависимо сти от распределения давлений в камерах реле мембраны прогибаются в ту или иную сторону, и подвижной шток, перемещаясь, закрывает или верхний канал, или нижний.  [c.523]

В результате этих сдвигов компоненты III rf, III с и Ий должны расщепиться. Сериесу, который работал с источником света, охлаждаемым жидким воздухом, и с двойным эталоном Фабри и Перо, удалось разрешить компоненты III й и 111с [ ]. Всего им измерено положение 8 компонент (рис. 69), из которых 1-я представляет собой нало-  [c.130]

С точки зрения контроля шума важны также обтекатель двигателя и мотогопдола. Источниками звука служат передняя и задняя оконечности двигателя, поэтому соответствующие секции мотогондолы должны быть звукоизолированы. Важную роль здесь могут сыграть специальные конструкции с использованием композиционных материалов. При этом может быть достигнут двойной эффект. Композиционный материал не только компенсирует дополнительную массу глушителей, но и улучшает поглощение звука по сравнению с металлами. На рис. 28 показана звукопоглощающая конструкция мотогондолы.  [c.76]


Смотреть страницы где упоминается термин Источник двойной : [c.195]    [c.153]    [c.275]    [c.202]    [c.305]    [c.357]    [c.423]    [c.438]    [c.219]    [c.179]    [c.1209]    [c.614]    [c.129]    [c.70]    [c.159]    [c.82]    [c.219]    [c.44]    [c.79]   
Теоретическая гидродинамика (1964) -- [ c.0 ]



ПОИСК



Двойни

Двойной источник или акустический диполь

Диполь, или двойной источник

Источник звука двойной

Источник питания двойной

Источник питания двойной регулируемый

Источник питания двойной стабилизированный

Источники простые и двойные

П двойной

Потенциал скоростей. Поле источника и диполя. Непрерывное распределение источников и диполей. Ньютонов потенциал Потенциал простого и двойного слоев

Резонатор 431 — бесконечно малый на пути волн 274 возбуждение 213 возбуждение посредством пламени 221 вынужденное колебание 192 высота двойной источник 209 отталкивание

Сопротивление волновое двойного слоя источников

Сопротивление волновое двойного слоя источников для малых чисел Фруда

Сопротивление волновое двойного слоя источников при возникновении внутренних

Сопротивление волновое двойного слоя источников типа Мичелля при неустановившем ся движении



© 2025 Mash-xxl.info Реклама на сайте