Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозионная кислотах

Для подшипников, работающих в химически агрессивных средах, наибольшее применение получила сталь Х18 (0,9—1,0% С, 17—19% Сг, остальное марганец, кремний, сера, фосфор и т. д, в обычных пределах). Высокое содержание хрома необходимо для придания стали высокого сопротивления коррозии. Сталь обладает высокой коррозионной стойкостью в пресной и морской воде, в растворах азотной и уксусной кислот, в различных органических средах, но имеет плохую стойкость в смеси азотной и серной кислот.  [c.408]


Тугоплавкие сплавы, в первую очередь тантал, сплав ниобия с танталом и в отдельных случаях молибден, являются самыми кислотостойкими металлическими материалами. Их применение особенно целесообразно в средах, в которых другие материалы не обладают коррозионной стойкостью. К таким средам относятся неорганические крепкие кислоты при повышенных температурах, а также некоторые промышленные среды.  [c.535]

Коррозия является самопроизвольным процессом разрушения металлов в отличие от не называемого коррозией преднамеренного разрушения металлов при их растворении в кислотах (с целью получения солей), в гальванических элементах (с целью получения постоянного электрического тока), при анодном растворении в электролизерах (с целью последующего катодного осаждения металла из раствора) и т. п. Причина коррозии металлов — химическое или электрохимическое взаимодействие с окружающей средой — отграничивает коррозионные процессы от процессов радиоактивного распада металлов и от эрозии — механического разрушения металлов (при шлифовке металлов или износе трущихся деталей машин).  [c.8]

Наука о коррозии и защите металлов изучает взаимодействие металлов с коррозионной средой, устанавливает механизм этого взаимодействия и его общие закономерности. Своей конечной практической целью учение имеет защиту металлов от коррозионного разрушения при их обработке и эксплуатации металлических конструкций в атмосфере, речной и морской воде, водных растворах кислот, солей и щелочей, грунте, продуктах горения топлива и т. д.  [c.10]

Попадание в неэлектролиты воды значительно активирует действие примесей в неэлектролитах и вызывает, особенно в присутствии солей или кислот, интенсивное протекание электрохимической коррозии металлов (см. ч. И), т. е. изменяет механизм коррозионного процесса.  [c.142]

Примерами электрохимической коррозии металлов являются ржавление различных металлических изделий и конструкций в атмосфере (металлических станков и оборудования заводов, стальных мостов, каркасов зданий, средств. транспорта и др.) коррозия наружной металлической обшивки судов в речной и морской воде ржавление стальных сооружений гидросооружений ржавление стальных трубопроводов в земле разрушение баков и аппаратов растворами кислот, солей и щелочей на химических и других заводах, коррозионные потери металла при кислотном травлении окалины коррозионные потери металлических деталей при нагревании их в расплавленных солях и щелочах и др.  [c.148]


Простой метод коррозионных испытаний металлов в электролитах, например, в кислотах, при высоких температурах и давлениях состоит в выдержке исследуемого образца металла, помещенного в запаянную ампулу из термостойкого стекла с налитым в нее электролитом, при заданной температуре в термостатированном шкафу. Для предупреждения разрыва запаянных ампул вследствие образования в них паров электролита и накопления газообразных продуктов коррозии ампулы помещают в контейнеры, изготовленные из нержавеющей стали, у которых для создания противодавления пространство между стенкой и ампулой заполняют водой. Более совершенным методом коррозионных испытаний в электролитах при высоких температурах и давлениях является проведение их в специальных автоклавах (рис. 329).  [c.445]

Коррозия начинается с поверхности металла и при дальнейшем развитии этого процесса распространяется вглубь. Металл при этом может частично пли полностью растворяться (например, цинк в соляной кислоте) или же могут образоваться продукты коррозии в виде осадка на металле (например, ржавчина ] ри коррозии железа во влажной атмосфере, гидрат окисла при коррозии цинка в воде). Иногда коррозионные процессы протекают с изменением физико-механических свойств металлов и сплавов (потерей металлического звука, резким снижением механической прочности вследствие нарушения связи по границам кристаллитов).  [c.5]

Практически наиболее важными являются коррозионные процессы, протекающие в неокислительных кислотах за счет разряда водородных ионов с выделением газообразного водорода, и процессы, протекающие в нейтральных растворах солей за счет ассимиляции электронов растворенным в электролите кислородом.  [c.38]

В первом случае коррозионные процессы получили название коррозии металлов с водородной деполяризацией, во втором— коррозии металлов с кислородной деполяризацией. Иногда оба катодных деполяризующих процесса протекают одновременно и параллельно, например при коррозии железа в разбавленных растворах серной или соляной кислоты в присутствии растворен-  [c.38]

На возникновение коррозионного растрескивания металлов и на его интенсивность оказывают большое влияние характер агрессивной среды, ее концентрация, температура, структурные особенности металла и др. Наибольшее число разрушений аппаратов из углеродистых и низколегированных сталей наблюдается в растворах щелочен, азотнокислых солей, влажном сероводороде. Известны также отдельные случаи разрушения этих сталей в азотной кислоте, смеси азотной кислоты с серной кислотой и других средах.  [c.102]

Для некоторых систем первые пороги устойчивости отсутствуют, а коррозионная стойкость наступает только при высоких значениях п, как это видно из кривой изменения химической стойкости для системы Си—Аи в концентрированной азотной кислоте плотности 1,3-Ю кг м при температуре 90° С (рис. 97). Известны случаи наступления коррозионной стойкости, напри-чер для бронз, и при более высоком пороге устойчивости.  [c.126]

Наиболее важными ионами, находящимися в грунтах и влияющими на скорость коррозионного процесса, являются СП, N0 50 , НСО , Са +, Mg +, К+, На+. Органические соединения, в особенности фенолы и органические кислоты, образующиеся в почве в результате бактериальных процессов, усиливают коррозию. Некоторое значение при оценке коррозионной опасности имеет кислотность грунта. Очень кислые грунты, у которых pH  [c.185]

Коррозионная стойкость железа и углеродистой стали в смеси серной и азотной кислот в присутствии воды зависит от  [c.202]

Коррозионная с т о Г1 к о с т ь х р о м о н и к е л е в ы х, сталей (как и хромистых) обусловлена в основном образованием на поверхности сплава защитной пассивной пленки однако хромоникелевые стали обладают несколько более высокой коррозионной стойкостью, чем хромистые стали. Объясняется это наличием в сплаве никеля, который способствует образованию мелкозернистой однофазной структуры и повышает стойкость стали в разбавленных растворах серной кислоты, а также,-в ряде водных растворов солей.  [c.226]


Коррозионная стойкость оловянистых бронз немного выше стойкости меди в ряде агрессивных сред, в частности в серной кислоте невысоких концентраций и в других слабокислых средах, в морской воде, в щелочных растворах (исключая аммиачные) и др.  [c.250]

Коррозионная стойкость оловянистой бронзы в растворах серной кислоты в зависимости от температуры  [c.251]

Повышение коррозионной стойкости колезоуглерошютых сплавов при BU OKUX концентрациях серной кислоты объясняется образованием на их поверхности защитного слоя, состоящего из не растворкиого в /45 сульфата железо..  [c.21]

Коррозионная стойкость таких сварных соединений в a. JOTnofi кислоте различной концентрации сопоставима со (стойкостью стали 08Х17Т, Для сварки сталей, содержащих Сг 25%, исполь-  [c.276]

Добавка к ниобию молибдена и тантала улучшает коррозионную стойкость. Так как при вывоком содержании молибдена технологическая пластичность падает, то перспективным является легирование ниобия танталом. Введение тантала в ниобий резко повышает стойкость сплава в соляной, фосфорной и в кипящей серной кислотах (рис. 395). Сплав Nb+25% Та по коррозионной стойкости значительно превосходит чистый ниобий п приближается к танталу.  [c.535]

Так как коррозионные процессы в большинстве случаев протекают по электрохимическому механизму, то большое значение для этих процессов имеют свойства растворов электролитов. Электролитами называются проводники второго рода, электропроводность которых обусловлена передвижением ионов в электрическом поле (ионная проводимость) положительно заряженных катионов и отрицательно заряженных анионов. Проводниками второго рода обычно являются водные растворы солей, кислот и оснований, а также эти вещества в расплавленном состоянии. Электролитами могут быть и некоторые неводные растворы. Наряду с сильными электролитами, полностью диссоциирующими в растворах на ионы, некоторые вещества, например органические кислоты, лишь частично распадаются на ионы их принято называть слабыми электролитами.  [c.11]

Так как электродные потенциалы играют очень большую роль в коррозионных процессах, то весьма важно знать значения этих потенциалов, а отсюда и действигельную разность потенциалов между металлом и раствором электролита. Однако абсолютные значения потенциалов до сих пор не удалось определить. Нет достаточно надежных методов экспериментального измерения или теоретического вычисления абсолютных значений потенциалов, и вместо абсолютных электродных потенциалов измеряют относительные, пользуясь для этого так называемыми электродами сравнения. Этот принцип определения значений электродных потенциалов основан на том, что если определить э. д. с. коррозионных элементов, составленных последовательно из большинства технических металлов и какого-нибудь одного, одинакового во всех случаях электрода, потенциал которого условно принят за нуль, то измеренные э. д. с. указанных элементов позволят сравнить электрохимическое поведение различных металлов. В качестве основного электрода сравнения принят так называемый стандартный водородный электрод, представляющий собой электрод из черненой (платинированной) платины, погруженный в раствор кислоты с активностью ионов Н+, равной 1 г пон1л. Через раствор продувается водород под давлением 1,01.3-10 н м -. Пузырьки водорода адсорбируются на платине, образуя как бы водородную пластинку, которая, подобно металлу, обменивает с раствором положительные ионы. На рис. 10 показано, как составляется цепь из водородного электрода и другого электрода при измерении относительных электродных потенциалов.  [c.23]

Повышение коррозионной стойкости железоуглеродистых сплавов при высоких концентрациях серной кислоты объясняется образованием на их поверхности защитного слоя, состоящего из нерастворимого в Н2804 сульфата железа. Как  [c.202]

Рис. 159. Зависимость коррозионной стойкости стали Х17Н2 в растворах уксусной, муравьиной, азотной и фосфорной кислот различной концентрации от температуры Рис. 159. Зависимость <a href="/info/453466">коррозионной стойкости стали</a> Х17Н2 в растворах уксусной, муравьиной, азотной и <a href="/info/44840">фосфорной кислот</a> различной концентрации от температуры
И других средах, содержащих ионы-активаторы (хлор-ион и др.). Добавка меди существеиш) улучшает коррозионную стойкость аустенитной стали н серной кислоте невысоких концентраций (рис. 164), о.тнако добавка только меди недостаточна для полной пассивации стали при невысоких температурах п разбавленной кислоте. Болес эффективные результаты получаются при совместном легировании стали медью и молибденом.  [c.230]

Коррозионная стойкость хромониксльмолибденомсдистых сталей в некоторых агрессивных средах, в особенности в растворах серной кислоты средних концентраций при повышенной температуре, вплоть до 80" С, довольно высока. Влияние легирующих элементов иа коррозионную стойкость этих сталей в серной кислоте сказывается различно, в зависимости от концентрации и температуры среды. Хром повышает коррозионную стойкость в 5—30%-ной серной кислоте при температуре 80 С. Никель и медь повышают коррозионную стойкост1з в 5—60%-но( 1 серной кислоте и особенно в 40—60%-ной при 80° С и в 5— 50%-ной лри температуре до 80° С. Молибден увеличивает стойкость стали в 5—70 /()-пой кислоте при 80° С и в 5—507о-ной при температуре кипения.  [c.230]


Стали марок Х23Н23МЗДЗ м Х23Н28МЗДЗ обладают также высокой коррозионной стойкостью в фосфорной кислоте, содержащей фтористые соединения, и в ряде других сильно агрессивных сред.  [c.230]

Коррозионная стойкость железокремипстых сплавов определяется пленкой. твуокнси кремния, образующейся на нх поверхности, поэтому окислительные среды усиливают защитные свойства этой пленки. При механическом повреждении пленка под действием окислителей способна к самозалечиванию . Высоко-кремнистые сплавы, стойкие в серной и азотной кислотах и их  [c.239]

Коррозионная стойкость железокремнемолибденовых сплавов примерно такая же, как и железокремнистых сплавов без добавок молибдена, за исключением того, что железокремнемолибдеповьг. /год сплавы стойки в растворах соляпоГ кислоты. Эти сплавы не рекомендуется зг применять в ----------- ------------  [c.242]

Хромистые чугуны обладают высокой коррозионной стойкостью в окислительных средах. В холодной азотной кислоте, как в разбавленной, так и в концентрированной, хромистые чугуны стойки. В концентрированной горячей кислоте коррозионная стойкость хромистых чугунов значительно ниже стойкости стали типа Х18Н9. В 70%-ной фосфорной кислоте, в нитрозилсер-ной кислоте, в уксусной кислоте, в растворах солей, в том числе и в хлористых, в большинстве органических соединений (не являющихся восстановителями) хромистые чугуны не подвергаются коррозии. Они также отличаются стойкостью к некоторым расплавленным металлам (алюминий, свинец).  [c.244]

ОлоБяиистые бронзы, так же как и медь, быстро разрушаются в азотной кислоте и в других окисляющих средах, в аммиаке, цианистых соединениях и др. С повышением температуры коррозионная стойкость оловянистых бронз снижается, как это видно из данных, приведенных в табл. 24 для оловянистой бронзы, содержащей 2% 2п.  [c.250]

Никель обладает высокой коррозионной стойкостью при по-выншнных температурах во многих органических средах, в том числе в жирных кислотах, спиртах и т. д., поэтому из никеля изготовляют аппаратуру для пищевой промышленности. Kofjpo-зионная устойчивость никеля в этих условиях очень высока соединения никеля неядовиты и не влияют на вкус и цвет продуктов.  [c.256]


Смотреть страницы где упоминается термин Коррозионная кислотах : [c.28]    [c.32]    [c.79]    [c.276]    [c.535]    [c.535]    [c.262]    [c.331]    [c.417]    [c.67]    [c.70]    [c.200]    [c.200]    [c.215]    [c.215]    [c.240]    [c.241]    [c.254]    [c.257]   
Коррозионная стойкость материалов (1975) -- [ c.265 ]



ПОИСК



Андреева, Е. А. Яковлева. Исследование механизма влияния ионов Ti4 на электрохимическое и коррозионное поведение титана в растворах серной кислоты

Вариант 7.2. Изучение зависимости толщины и массы автоосажденного покрытия и его коррозионной стойкости от природы и содержания кислоты и окислителя

Влияние кремния на коррозионную стойкость стали в азотной кислоте

Воробьева М. А., Клинов И. Я. Коррозионные и электрохимические свойства нержавеющих сталей в растворах уксусной кислоты

Горбачев, Ф. К Андрющенко, В. И, Шморгун, Н. Н. Нечипоренко, Э. Э. Креч. Коррозионная стойкость нитрида титана в растворах соляной кислоты

Диаграммы коррозионной соляной кислоте

Диаграммы коррозионной стойкост азотной кислоте

Диаграммы коррозионной стойкост материалов в серной кислоте

Диаграммы коррозионной стойкост металлов в.плавиковой кислот

Диаграммы коррозионной стойкост уксусной кислоте

Железо коррозионные токи в кислотах

Испытания на коррозионную стойкость нержавеющих сталей в азотной кислоте

Казарин, В. В. Андреева. Влияние хрома на электрохимическое и коррозионное поведение титана в растворах кислот

Кайзер. Исследование коррозионной стойкости пентапласта в растворах минеральных кислот

Коррозионная активность адипиновой кислоты

Коррозионная активность азотной кислоты

Коррозионная активность изобутилсерной кислоты

Коррозионная активность левулиновой кислоты

Коррозионная активность метакриловой кислоты

Коррозионная активность монохлорпропионовой кислоты

Коррозионная активность монохлоруксусной кислоты

Коррозионная активность муравьиной кислоты

Коррозионная активность олеиновой кислоты

Коррозионная активность пропионовой кислоты

Коррозионная активность серной кислоты, этанольных растворов

Коррозионная активность синтетических жирны*, кислот

Коррозионная активность соляной кислоты

Коррозионная активность трихлоруксусной кислоты

Коррозионная активность уксусной кислоты

Коррозионная активность хлористого водорода и соляной кислоты

Коррозионная активность хлорсульфоновой кислоты

Коррозионная стойкость в азотной кислот

Коррозионная стойкость в активных среда серной кислоте

Коррозионная стойкость в активных среда уксусной кислоте

Коррозионная стойкость в активных среда фосфорной кислоте

Коррозионная стойкость в высококонцентрированной азотной кислоте, содержащей оксид азота

Коррозионная стойкость в кремнефтористоводородной кислоте

Коррозионная стойкость в растворах азотной кислоты

Коррозионная стойкость в смесях кислот

Коррозионная стойкость в фосфорной кислоте

Коррозионная стойкость в хлористоводородной (соляной) кислоте

Коррозионная стойкость во фтористом водороде и фтористоводородной кислоте

Коррозионная стойкость конструкционных материалов в азотной кислоте

Коррозионная стойкость конструкционных материалов в серной кислоте

Коррозионная стойкость конструкционных материалов в хлористом водороде и соляной кислоте

Коррозионная стойкость металлов и сплавав в соляной кислоте

Коррозионная стойкость неметаллических материалов в соляной кислоте

Коррозионно-стойкие стали для применения в средах повышенной и высокой агрессивности для сварных конструкций, работающих в кислотах Коррозионная стойкость 259 — Коррозионные среды 260 — Марки 257258 — Механические свойства 259 Назначение 257—258 — Режимы термообработки 259 — Технологические

Коррозионно-стойкие стали для применения в средах повышенной и высокой агрессивности для сварных конструкций, работающих в кислотах Коррозионная стойкость 259 — Коррозионные среды 260 — Марки 257258 — Механические свойства 259 Назначение 257—258 — Режимы термообработки 259 — Технологические свойства 261 — Химический состав

Коррозионное действие минеральных кислот, щелочей, растворов неэлектролитов и других сред

Куртепов, Т. В. Волкова. О коррозионном и электрохимическом поведении некоторых металлов и сплавов в растворах соляной кислоты при низкой температуре

Производство фосфорных удобрений, фосфорной кислоты и фосфора Коррозионная стойкость материалов в фосфорной и кремнефтористоводородной кислотах

Физико-химические свойства и коррозионная стойкость в смесях кислот

Физико-химические свойства фосфорной кислоты и коррозионная стойкость в ней конструкционных материалов

Физико-химические свойства фтористого водорода, фтористоводородной и кремнефтористоводородной кислот и коррозионная стойкость в них конструкционных материалов

Физико-химические свойства хромовых кислот и коррозионная стойкость конструкционных материалов



© 2025 Mash-xxl.info Реклама на сайте