Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ниобий — Содержание в стали влияние на сварку

Ниобий — Содержание в стали и влияние на сварку 34  [c.511]

На определенном расстоянии по обе стороны сварного шва находятся области, нагревающиеся до критических температур. Здесь по границам зерен пересыщенного аустенита выделяются карбиды, богатые хромом. В результате того что устойчивость по границам зерен уменьшается, в агрессивных средах идет межкристаллитная коррозия. Образование карбидов зависит не только от температуры, но и от продолжительности ее воздействия. Влияние этих факторов определяется химическим составом основного материала и его структурой. Для сварки непригодны стали, при нагревании которых в области критических температур по границам зерен образуется карбид хрома. Поэтому для изготовления сварных конструкций широко применяются стали, стабилизованные титаном, ниобием или танталом, а также стали с низким содержанием углерода, при сварке которых не выделяются карбиды. В большинстве случаев их использования межкристаллитная коррозия в зонах, расположенных на определенном расстоянии от сварного шва, не наблюдается.  [c.100]


Когда содержание титана или ниобия находится на нижнем пределе по отношению к углероду, сталь не всегда стойка против межкристаллитной коррозии, особенно в условиях длительной службы деталей при умеренных температурах (500—800°). Это связано с влиянием азота, всегда присутствующего в стали, который связывает часть титана в нитриды, а такн<е с влиянием высокотемпературного нагрева, приводящего к растворению части карбидов хрома при последующем охлаждении карбиды выделяются по границам зерен, сообщая стали склонность к межкристаллитной коррозии. Поэтому перегрев стали при термической обработке (выше 1100°) или сварке считается вредным, особенно в тех случаях, когда соотношение между титаном и углеродом находится на нижнем пределе.  [c.1368]

Нагревы при критических температурах играют значительную роль в появлении ножевой коррозии. Однослойные швы подвергаются ножевой коррозии после сварки только в отдельных случаях. Однако длительная их выдержка при 350—550° С вызывает снижение стойкости на границе с наплавленным металлом. И хотя для ножевой коррозии важнее состав основного металла, нельзя пренебрегать и влиянием состава наплавленного металла. Небольшое повышение содержания феррита на самой границе сплавления ведет к ограничению возможности появления ножевой коррозии [115]. Этого можно достигнуть не только более высоким содержанием феррита в основном металле, но прежде всего, легированием металла шва ниобием при отношении Nb С = 16 1. Титан, кремний и ванадий, которые ухудшают коррозионную стойкость в азотной кислоте, для этого, по-видимому, непригодны. Эта рекомендация, впрочем, не согласуется со сведениями о влиянии а-фазы, образующейся при распаде феррита, на стойкость стали в азотной кислоте.  [c.146]

При сварке аустенитных сталей действие углерода проявляется по-разному, в зависимости от изменения его концентрации, а также композиции шва и содержания в нем легирующих примесей. При повышении содержания углерода в швах типа 18-8 от 0,06—0,08% до 0,12—0,14%, наблюдаемом, например, при сварке в Og, склонность к трещинообразованию может возрасти, причем склонность к трещинам заметно усиливается, если в шве содержится титан, ниобий и другие энергичные карбидообразователи. В этом случае вредное действие углерода связано с появлением по границам кристаллов аустенита легкоплавких карбидных звтектик ледебурит-ного типа. Иными словами, углерод в данных условиях действует так же, как при сварке углеродистых и низколегированных сталей. В связи с этим необходимо указать на недопустимость использования электродной проволоки со следами графитовой смазки на поверхности. Дальнейшее повышение содержания углерода, например до 0,18—0,20%. приводит к резкому усилению трещино-образования. В этом случае вредное влияние углерода усиливается вследствие аустенитизации структуры шва. В известном диапазоне концентраций углерод по своему действию уподобляется никелю — он способствует утолщению межкристаллитных прослоек (аустени-тизация) и снижению температуры их затвердевания. По мере дальнейшего увеличения содержания углерода в шве, по достижении определенной критической концентрации, влияние этого элемента на трещинообразова ние внезапно изменяется. Углерод из возбудителя горячих трещин превращается в средство их устранения [15, 25]. Изменение поведения углерода связано с измельчением структуры и увеличением количества эвтектической жидкости, которая, заполняя промежутки между кристаллами, залечивает горячие трещины.  [c.198]


Практически минимальное количество углерода в прокатной -стали и проволоке, изготовляемых для промышлениого применения, составляет 0,06%. Введение в такую сталь добавочных количеств химически стабилизирующих элементов титана или ниобия делает ее, как правило, не склонной к межкристаллитной коррозии без специальной термообработки. Такие стали могут применяться для изготовления сварной химической аппаратуры и деталей, работающих в интервале 500—700°. Терми-черкая обработка таких изделий, как правило, необязательна. Содержание углерода в проволоке для сварки ответственных деталей и особенно деталей, работающих в тяжелых условиях коррозии, как это имеет место в химической промышленности, не должно превышать 0,06%. Чем ниже содержание углерода в присадочном материале, тем выше качество сварного шва. В те с случаях, когда хромо-никелевые стали применяются в условиях умеренного воздействия коррозионных агентов, содержание углерода не оказывает большого влияния на коррозионную стойкость в том случае, если он находится в твердом растворе и для изготовления деталей может применяться сталь с содержанием углерода 0,07—0,12%.  [c.11]

Итак, стабилизированные стали должны содержать достаточное по отношению к углероду количество карбидобразующего элемента (достаточная стабилизация), который должен связать углерод в специальные карбиды и этим сделать невозможным выпадение карбидов хрома. В этом случае стали ведут себя приблизительно так, как если бы они почти совсем не содержали углерода. Напомним (см. 4.1), что стабилизация стали 1Х18Н9 титаном и ниобием в соответствии с эмпирическими формулами, приведенными выше (табл. 18), в большинстве случаев полностью подавляет склонность к межкристаллитной коррозии того типа, который проявляется у нестабилизированных сталей после сварки (см., например, рис. 31). Изделия, изготовленные с применением сварки из правильно стабилизированных сталей [226, 244], оказываются и без последующего отжига стойкими к межкристаллитной коррозии в зонах, подвергшихся термическому влиянию. Однако, при более длительных выдержках в условиях критических температур и стабилизированные таким образом стали становятся также в различной мере склонными к межкристаллитной коррозии в зависимости от степени стабилизации. Действительно, ранее было установлено, что растворяющий отжиг при температуре 1150° С уже может оказать влияние на стойкость стали с более низким содержанием титана и ниобия. При этой температуре еще не может произойти значительный рост зерна, поэтому увеличение количества карбидов хрома, выделяющихся по границам зерен в зоне термического влияния сварного соединения, нельзя в этом случае объяснить только уменьшением всей поверхности границ за счет роста зерна. Точно так же гипотеза о значительной поверхностной активности углерода по отношению к хромоникелевому аусте-ниту, основанная на современных представлениях о роли поверхностных слоев кристаллов твердого раствора при термообработке поликристаллических веществ и очень хорошо описывающая распределение углерода в аустените, не объясняет процесс освобождения связанного в специальном карбиде углерода во время растворяющего отжига при высоких температурах. Чтобы в поверхностных слоях аустенитных зерен могла повыситься концентрация углерода, прежде всего должна произойти диссоциация присутствующих в структуре карбидов титана, ниобия или тантала, а для этого углерод и карбидобразующий элемент должны перейти в твердый раствор. Реально ли это с термохимической точки зрения, можно вывести  [c.128]

Промышленные испытания этих сталей на ряде химических заводов показали некоторые преимущества стали Х23Н28МЗДЗ в отношении стойкости к межкристаллитной коррозии. Поэтому при изготовлении оборудования на заводах химического машиностроения не допускают длительных нагревов в области 600—700° при сварке. Склонность сталей этого типа к межкристаллитной коррозии зависит главным образом от содержания углерода и никеля. Чем больше их количество, тем больше склонность стали к межкристаллитной коррозии. Положительное влияние на стойкость стали к межкристаллитной коррозии оказывают добавки титана и ниобия.  [c.47]


Сварочные деформации предотвращают обычными методами, применяемыми при изготовлении сварных конструкций. Вместе с тем режимы сварки аустенитных сталей должны характеризоваться высокими скоростями, пониженным напряжением дуги и минимальным током. Полностью предотвратить образование горячих трещин предварительным подогревом или созданием принудительного сжатия металла шва и околошовных зон при помощи специальных приспособлений невозможно. В конструкциях, работающих при температуре до 600—650° С, эффективным средством борьбы с горячими трещинами является выполнение шва с аустенитно-ферритной структурой. Для этого применяют электроды и сварочные проволоки с повыщенным содержанием ферритообразующих элементов (хрома, молибдена, вольфрама и ниобия). В связи с вредным влиянием углерода на стойкость сварных швов при сварке сталей типа Х18Н10Т не рекомендуется применять проволоку, имеющую на поверхности следы графитовой смазки.  [c.145]

Однако механизм вредного влияния никеля нельзя сводить к его аустенитизирующему действию. Вероятно, более опасным свойством никеля является его способность соединяться с серой и давать легкоплавкий сульфид, имеющий температуру плавления всего 644°С (эвтектика Ni—NigSg плавится при 625" С, рис. 78, г), а также давать легкоплавкое соединение с кремнием, ниобием и бором. Уместно напомнить, что возбудитель горячих трещин при сварке углеродистых сталей — сульфид железа -— гораздо более тугоплавок (1189° С, эвтектика Fe—FeS затвердевает при 985° С). Образование сульфида никеля происходит, очевидно, на границах зерен. Этому способствует склонность серы к ликвации и повышение содержания никеля у поверхностей кристаллов аусте-нита, обусловленное характером кристаллизации системы Fe—Сг— —Ni—Мп. Вредное влияние никеля проявляется и в аустенитиза-ции структуры шва, т. е. в утолщении межкристаллитных про-  [c.196]

Отрицательное влияние ниобия на горячеломкость аустенитных швов тесно связано с характером его растворимости в никеле и железе. Ниобий, как и титан, способен давать легкоплавкую эвтектику с каждым из указанных элементов [22, 33]. В табл. 34 приведены данные о предельной растворимости и температуре эвтектики для бинарных сплавов никеля и железа с ниобием и титаном. Согласно нашим представлениям о природе кристаллизационных трещин, можно ожидать, что в тех случаях, когда шов содержит относительно мало никеля, т. е. представляет собой аустенитную сталь, наибольшую опасность должен представлять ниобий, а не титан. В пользу такого утверждения говорит относительно более низкая растворимость ниобия в л<елезе по сравнению с никелем и более низкая температура эвтектики в системе Fe—Ni по сравнению с эвтектикой Fe—Ti. Наоборот, при сварке высоконикелевых аустенитных сталей и сплавов на никелевой основе следует ожидать отрицательного действия скорее титана, а не ниобия. В пользу этого утверждения говорит относительно более низкая температура эвтектики в системе N1—Ti по сравнению с эвтектикой Ni—Nb. Практика сварки аустенитных сталей, в общем, подтверждает эти предположения. При сварке сталей типа 18-8 ниобий опаснее титана. При сварке сталей с соотношением содержаний хрома и никеля, равным или меньшим единицы, например при сварке стали ЭИ696 (Х10Н20Т2), большую опасность представляет титан, а не ниобий.  [c.209]

Кислород может вызывать горячие трещины при сварке аустенитных сталей. Его действие на первичную структуру, как указывалось, связано с окислением ферритообразующих элементов (титана, алюминия, кремния, ванадия, хрома) и находится в противодействии измельчающему влиянию азота. Изменения структуры, обусловленные действием кислорода, приводят к снижению стойкости шва против трещин. Кислород, по-видимому, способен сегрегировать в межкристаллических прослойках и изменять их состав и свойства. Усиление вредного влияния серы, ниобия и других элементов при сварке под флюсами с высоким содержанием SiOj, возможно, связано с образованием соответствующих соединений с кислородом, снижающих температуру затвердевания межкристаллических прослоек. Опыты по введению в зону сварки ржавчины, окалины и газообразного кислорода свидетельствуют о его способности вызывать горячие трещины в швах.  [c.216]

Образованию горячих трещин в высоколегированных аустенитных швах способствуют наличие серы, фосфора, кремния, ниобия, водорода, легкоплавких металлов (РЬ, п, 5п) увеличение толщины свариваемого металла повышение погонной энергии сварки укрупнение структуры увеличение соотношения содержаний никеля и хрома (увеличение запаса аустенитности). Особенно сильно снижает стойкость аустенитных однофазных швов против образования горячих трещин ниобий. В чистоаустенитном хромоннкелевом шве типа 05Х20Ы15 с весьма низким содержанием углерода, кремния и серы достаточно присутствия 0,30—0,35% ниобия, чтобы вызвать горячие трещины (по данным [48], достаточно 0,15—0,20% ниобия). Такое влияние ниобия обусловлено сильной дендритной ликвацией его из-за ограниченной растворимости в твердом растворе стали вследствие большой разницы между размером его атома и атома железа и образования в связи с этим карбо-нитридной эвтектики (обогащенной никелем) по границам дендритов с более низкой температурой плавления, чем основа металла шва. Ниобий снижает также пластичность шва, однако, подобно молибдену, он несколько уменьшает вредное действие кремния на стойкость хромоникелевого металла типа 25-20 против образования трещин [47].  [c.294]


Смотреть страницы где упоминается термин Ниобий — Содержание в стали влияние на сварку : [c.61]    [c.88]    [c.241]    [c.309]    [c.33]   
Справочник сварщика (1975) -- [ c.34 ]



ПОИСК



Ниобий

Ниобий сварка

Ниобий — Содержание в стали

Ниобит 558, XIV

Сварка стали



© 2025 Mash-xxl.info Реклама на сайте