Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Бериллий Коррозия

Имеются доказательства, что при пластической деформации атомы цинка концентрируются преимущественно у границ зерен Различия в составе приводят к электрохимическому взаимодей ствию таких участков с зернами. По этой причине в ряде агрес сивных сред небольшая межкристаллитная коррозия может про исходить и без приложенного напряжения. Однако участки пла стической деформации при определенных значениях потенциала могут способствовать адсорбции комплексных ионов аммония, что в свою очередь приводит к быстрому образованию трещин. Аналогичный эффект может наблюдаться и вдоль линий скольжения (транскристаллитное растрескивание). По-видимому, выделение цинка на границах зерен является существенной причиной наблюдаемой межкристаллитной коррозии латуней в то же время наличие структурных дефектов в области границ зерен или линий скольжения играет большую роль в протекании КРН. Следовательно, разрушение медных сплавов в результате растрескивания наблюдается не только в сплавах меди с цинком, но также и со множеством других элементов, например кремнием, никелем, сурьмой, мышьяком, алюминием, фосфором [21 и бериллием [31].  [c.338]


Бронзы обладают высокими антифрикционными свойствами, хорошим сопротивлением коррозии, а также хорошей обрабатываемостью и литейными свойствами. В связи с этим бронзы широко применяют в подшипниках скольжения, направляющих, червячных и винтовых колесах, гайках винтовых механизмов, для изготовления арматуры и т. п. Бронзы по основному, кроме меди, компоненту делят на оловянистые, свинцовистые, алюминиевые, бериллиевые, кремнистые и др. Их обозначают буквами Бр и условными обозначениями основных компонентов А — алюминий, Б — бериллий, Ж — железо, К —кремний, Мц —марганец, Н — никель, О — олово, С — свинец, Ц — цинк, Ф — фосфор, а также цифрами, выражающими среднее содержание компонентов в процентах. Например, Бр ОФ 10-1 обозначает бронзу с содержанием 10% олова и 1% фосфора. Фосфористую (Бр ОФ 6,5-1,5) и бериллиевую (Бр Б 2,5) бронзы применяют для изготовления трубчатых пружин, мембран, моментных пружин (волосков) и т. д. Механические свойства и области применения других марок бронз приведены в табл. 16.3.  [c.162]

Коррозия циркония в воде при повышенных температурах, в атмосфере пара высоких параметров и в расплавленных металлах. Чем выше чистота металла, тем он более стоек (фиг. 21). При 500 час. испытаний при нормальной температуре цирконий оказался более коррозионностоек, чем сталь 18-8, ниобий, бериллий, алюминий.  [c.473]

ПИТТИНГОВАЯ КОРРОЗИЯ ТРАВЛЕНОГО БЕРИЛЛИЯ В МОРСКОЙ ВОДЕ ПРИ ТЕМПЕРАТУРЕ 15 С [106]  [c.157]

Рис. 88. Питтинговая коррозия ненапряженного протравленного листового бериллия в синтетической морской воде при 25 (постоянное полное погружение) [105] Рис. 88. <a href="/info/38884">Питтинговая коррозия</a> ненапряженного протравленного листового бериллия в синтетической <a href="/info/39699">морской воде</a> при 25 (постоянное полное погружение) [105]
Без специальных мер защиты от коррозии магниевые сплавы обычно не применяются. Основными легирующими добавками магниевых сплавов являются марганец, алюминий п цинк рейсе применяются церий, бериллий, кадмий и др.  [c.195]

При температуре 800° С в статических условиях в литии стойки молибден, вольфрам, ниобий, армко-железо. В загрязненном азотом литии при температуре 550° С не стойки никель и его сплавы, медь, алюминиевые сплавы [1,60]. Удовлетворительной стойкостью в литии обладают тантал, цирконий, титан. Вольфрам ограниченно стоек. Низкую стойкость в литии показали кобальт, ванадий, марганец, бериллий, хром и кремний [1,49]. В качестве защитной атмосферы при испытании образцов в литии могут применяться инертные газы гелий, неон и аргон [1,59]. Радиация на скорость коррозии конструкционных материалов в расплавленных натрии и литии почти не влияет [1,61], [1,62].  [c.51]


С введением 0,0025% силиката натрия скорость коррозии бериллия несколько уменьшается. Однако вероятно, что это уменьшение вызвано увеличением pH среды до значения 9,5.  [c.230]

При контакте с алюминием в статических условиях скорость коррозии бериллия практически не изменяется, в динамических условиях она возрастает. Контакт с нержавеющей сталью приводит к увеличению скорости коррозии бериллия при температуре  [c.230]

Металлический уран, как ядерное горючее, довольно быстро реагирует с углекислым газом (рис. У-15), при этом образуются окислы и карбиды. Ядерное топливо необходимо защищать от коррозии с помощью защитной оболочки, материал которой должен удовлетворять перечисленным в II-2 требованиям. Эксплуатируемые ныне атомные электростанции используют для этой цели исключительно сплав магния с бериллием.  [c.330]

Жаростойкость (окалиностойкость) —сопротивляемость деталей газовой коррозии при работе в условиях повышенных температур. Жаростойкость стали или сплава зависит от непроницаемости и прочности пленки окислов, образующихся на поверхности металла в процессе газовой коррозии. Для получения жаростойких сплавов применяют в качестве легирующих элементов хром, алюминий, кремний и бериллий.  [c.414]

Цирконий, будучи введен в сплавы магния с цинком, измельчает зерно, улучшает механические свойства и повышает сопротивление коррозии. Редкоземельные металлы и торий повышают жаропрочность магниевых сплавов. Бериллий в количестве 0,005— 0,012 % уменьшает окисляемость магния при плавке, литье и термической обработке.  [c.402]

Различают две основные группы медных сплавов 1) латуни — сплавы меди с цинком 2) бронзы — сплавы меди с другими элементами, в числе которых, но только наряду с другими, может быть и цинк. Медные сплавы обладают высокими механическими и техническими свойствами, хорошо сопротивляются износу и коррозии. Принята следующая маркировка медных сплавов. Сплавы обозначают буквами Л — (латунь) или Бр (бронза), после чего следуют буквы основных элементов, образую- цих сплав. Например, О — олово, Ц — цинк, Мц — марганец, Ж — железо, Ф — фосфор, Б — бериллий, X — хром и т. д. Цифры, следующие за буквами, указывают количество легирующего элемента.  [c.408]

Сведений о значительной коррозии бериллия в нагретой до высокой температуры воде и в расплавленном натрии не имеется.  [c.60]

В сталях бериллий сохраняет компенсирующие термоупругие свойства, обеспечивает малый или нулевой КЛР, хорошую устойчивость против коррозии.  [c.196]

Легирование меди другими компонентами может существенно изменить скорость газовой коррозии сплава. Наиболее сильно повышается стойкость меди к газовой коррозии при легировании ее бериллием (до 2,5 %), магнием (до 5 %) и алюминием (до 5%) (рис. 7.12). Для работы при высоких температурах до 900 °С применяют алюминиевые (до 10 % А1) и бериллиевые бронзы.  [c.205]

Свойства магния значительно улучшаются за счет легирования. Алюминий и цинк с массовой долей до 7 % повышают его механические свойства, марганец улучшает его сопротивление коррозии и свариваемость, цирконий, введенный в сплав вместе с цинком, измельчает зерно, повышает механические свойства и сопротивление коррозии, торий улучшает жаропрочность, бериллий уменьшает окисляемость при плавке, литье и термической обработке.  [c.250]

Ядерные топливные элементы, содержащие ядерное топливо, должны быть плакированы нерасщепляющимся материалом для предотвращения коррозии, деформации и потери радиоактивных частиц в охлаждающую жидкость. Ядерные топливные элементы плакируются различными металлами, в частности алюминием, коррозионно-стойкой сталью, магнием и его сплавами, цирконием и его сплавами, никелем, бериллием, ниобием, ванадием, а также графитом. Основными плакирующими металлами являются алюминий, цирконий, магний и коррозионно-стойкая сталь. Выбор плакирующих материалов зависит от их ядерных свойств, химической и физической совместимости с ядерным топливом, коррозионной стойкости и механических свойств. Плакированный слой должен обладать достаточно высоким пределом ползучести, чтобы оказать сопротивление деформации, вызванной давлением газов, вследствие процесса расщепления атомов.  [c.102]


Бериллий отличается высокой электро- и теплопроводностью, приближающейся к теплопроводности алюминия, а по удельной теплоемкости [ 2500 Дж/(кг град)] превосходит все остальные металлы. Бериллий стоек к коррозии. Подобно алюминию, при взаимодействии бериллия с воздухом на поверхности его образуется тонкая оксидная пленка, защищающая металл от действия кислорода даже при высокой температуре. Лишь при температуре вьппе 700 °С обнаруживаются заметные признаки коррозии, а Щ5И 1200 С металлический бериллий сгорает, превращаясь в белый порошок оксида бериллия.  [c.637]

Внутреннее окисление заключается в селективном окислении менее благородного компонента внутри сплава. Чаще всего это происходит на границах зерен. Указанное явление ведет к ухудшению прочностных характеристик сплава вследствие нарушенного сцепления зерен, придает сплаву хрупкость. Внутреннему окислению подвержены, в основном, сплавы на основе меди и серебра, легированные незначительными количествами алюминия, цинка, кадмия и бериллия. Этот вид коррозии встречается также у сплавов.железа, никеля и кобальта, в которых селективному окислению подвергаются добавки алюминия и хрома. Наиболее действенной предохранительной мерой против внутреннего окисления является увеличение концентрации легирующих добавок.  [c.71]

Металлический бериллий и ниобий предназначаются для защитных покрытий (от коррозии) урановых стержней в атомных котлах. Окись бериллия — на изготовление тиглей для плавки металлического урана.  [c.293]

Речь идет о материале № 10 Краткая заметка о коррозии бериллия, тория и урана , на 1 л. (Там же).  [c.64]

Бериллий — легкий хрупкий металл серебристо-серого цвета. Плотность 1,84, температура плавления 1315°, кипения — 2970 . Применяется в рентгеновской и атомной технике и является ценным легирующим компонентом для повышения упругости пружинных бронз и способности Стали к старению, сопротивления коррозии и воспламенения и т. д.  [c.162]

Олово, свинец, цинк, бериллий, магний, марганец имеют низкую стойкость в растворах соляной кислоты. При введении в свинец некоторых количеств сурьмы или кальция, а также при одновременном введении двух элементов кальция и алюминия, цинка и олова или цинка и кремния стойкость его несколько повышается. Примеси других элементов ускоряют коррозию свинца.  [c.98]

К конструкционным материалам в реакторах предъявляется дополнительное требование радиационной стойкости, т. е. длительного сохранения физических и химических свойств в условиях интенсивнейшего нейтронного облучения. Особенно опасны коррозия и падение механической прочности. Так, коррозия оболочек твэлов и теплоносителей может привести к нарушению герметичности и тем самым к радиоактивному заражению теплоносителя, а иногда и к аварии. Для изготовления конструктивных элементов применяются алюминий, его сплавы с магнием или бериллием, цирконий, керамические материалы, нержавеющая сталь, графит, покрытия из ниобия, молибдена, никеля и некоторые другие материалы.  [c.582]

Коррозия в атмосфере азота. При нагревании в воздушной атмосфере большинство металлов и сплавов сильно окисляются, тогда как взаимодействие их с азотом протекает слабо. Исключение составляют сплавы, содержащие нитридообразующие элементы хром, алюминий, титан, бериллий и др. Известно, что низколегированные хромом и алюминием стали при температуре 500 С образуют нитриды, обладающие высокой твердостью. Процесс образования нитридов на металлической поверхности называется азотированием .  [c.83]

Бериллий обладает стойкостью во влажном воздухе, но в морских атмосферах подвержен питтинговоп коррозии. Питтинг наблюдается также в условиях постоянного погружения в морскую воду. Наибольшая  [c.157]

Ряд исследований был посвящен изучению коррозионного растрескивания бериллия под напряжением в солевых растворах. Согласно имеющимся на сегоднящний день данным технически чистый бериллий не склонен к коррозии под напряжением в солевых растворах или в морской воде. В то же время сильная питтинговая коррозия, происходящая в этих средах, значительно снижает способность бериллия выдерживать напряжение. Согласно некоторым данным приложенное напряжение, хотя и не сопровождается увеличением плотности питтингов на поверхности, способствует ускоренному росту отдельных питтпнгов. Применение бериллия в морских условиях требует принятия дополнительных мер противокоррозионной защиты. Высокой устойчивостью в солевых растворах обладают анодированные покрытия с пропиткой силикатом натрия. Используются также алюминиевые покрытия с керамическим связующим (Serme Tel W). Прекрасные результаты получены при нанесении двойного слоя такого материала на предварительно обдутую металлической крошкой поверхность бериллия (сушка при 80 °С и отверждение при 343 С) ГЮ7]-В морских атмосферах это покрытие может использоваться при температурах свыше 200 °С, тогда как анодированное покрытие в этих условиях становится неустойчивым.  [c.158]

В лаборатории фирмы Тпсо (Райтсвилл-Бич, Сев. Каролина) в течение 5 лет проводились исследования обрастания и коррозии в морской воде [1,74]. Сильно корродирующие материалы, такие как сталь, подвержена и сильному обрастанию, но этот слой легко удаляется, а периодически просто отваливается вместе с продуктами коррозии. Пассивные металлы, например алюминий, также быстро обрастают, но в этом случае биологический слой прочно сцеплен с поверхностью металла. а щелевая коррозия под этим слоем приводит к питтингу. Токсичные металлы, такие как бериллий и свинец, также подвержены обрастанию. Медные сплавы обладают стойкостью к обрастанию, что объясняется образованием на их поверхности продуктов коррозии, содержащих закись меди, токсичную для морских организмов. Часто образующийся на медных сплавах гидроксихлорид меди не токсичен и в этом случае обрастание происходит, но легко поддается очистке. Чистая медь и сплавы 90—10 Си —Ni и 70—30 Си — Ni в равной степени стойки к обрастанию. Присутствие медных сплавов не защищает от обрастания соседние детали конструкций, изготовленные из других материалов. Это  [c.185]


Коррозия трех магниевых сплавов (Ml А, AZ31B и НК31А) и бериллия была такой быстрой, что их следует считать практически непригодными для применения в морской воде. Платиновые сплавы, содержащие 50 и 75 % меди подверглись травлению и питтинговой коррозии при 402 сут экспозиции на глубине 760 м. Такие сплавы обычно используют для изготовления контактов в электротехнике. Эти два сплава для использования в морской воде непригодны.  [c.404]

Бериллий — легкий хрупкий металл серебристо-белого цвета. Применяют в рентгеновской и атомной технике, является ценным легирующим компонентом для повышения упругости пружинных бронз и способности стали к противостарению, сопротивления коррозии и т. д. Поставляется по СМТУ 204—61 и порошок — СМТУ 111—53.  [c.97]

Цирконий, платина и гафний стойки в натрии до температуры 600—700° С, тантал в очищенном от кислорода натрии стоек до температуры 1000° С. Скорость коррозионного процесса бериллия становится значительной, если в натрии содержится 0,01% кислорода. Сурьма, висмут, кадмий, золото, иллий и чугун в натрии нестойки. На уран натрий воздействует только при наличии в последнем кислорода. При этом скорость реакции пропорциональна концентрации кислорода и при температуре 600° С для очищенного от кислорода натрия составляет 30—100 мк1мес. Торий и ванадий стойки в натрии до температуры 590° С. Скорость коррозии этих металлов 0,2 мг/см мес. Ниобий и вольфрам стойки в очищенном от кислорода натрии до температуры 900° С. Для кратковременной работы при температуре 1500° С пригоден молибден. Сварные соединения титана, циркония, ниобия, тантала, молибдена, никеля, выполненные аргонодуговой сваркой, стойки до температуры 800° С.  [c.49]

При температурах 385—445° С в полифинилах не стойки магний, цирконий и его сплавы, а также гафний [1,69], [1,70]. Цирконий в этих условиях становится очень хрупким из-за образования гидридов. Увеличение содержания воды в полифинилах приводит к значительному возрастанию скорости коррозии. Движение органического теплоносителя со скоростью 9 м/сек увеличивает лишь скорость коррозии циркония [1,70]. Коррозионное растрескивание и контактная коррозия в органических теплоносителях не наблюдаются [1,70]. Скорость коррозии углеродистых, низколегированных нержавеющих сталей и алюминиевых сплавов в полифинилах при температуре 380—445° С не превышает 0,025 мм/год. При температуре 430°С наиболее пригодны для изготовления оболочек тепловыделяющих элементов аустенитная нержавеющая сталь, алюминий типа САП, содержащий до 10% окиси алюминия, и бериллий [1,71]. В качестве основного конструкционного материала для органических теплоносителей может быть рекомендована углеродистая или низколегированная сталь. Это объясняется тем, что в высокотемпературном контуре, заполненном органическим теплоносителем, углеродистая сталь коррозии фактически не подвергается. Если принять соответствующие меры, то можно избежать и отложения продуктов полимеризации на теплопередающих поверхностях. Чтобы улучшить стойкость конструкционных материалов, органические теплоносители необходимо очищать от воды [1,72].  [c.55]

Увеличение скорости потока воды до 2,5 м1сек несколько тормозит язвенную коррозию. При температуре воды 65—85° С и скорости потока 9 м/сек скорость коррозии выдавленного бериллия составляла 0,002—0,003 мм/год. С ростом температуры от 30 до 90° С скорость коррозии бериллия возрастает с 0,0025 мм/год до 0,08 мм/год. В потоке воды скорость коррозии бериллия с температурой увеличивается еще в большей степени и равна при 90° С— 0,15 мм/год. В деаэрированной воде при температуре 260° С в результате тридцатидневных испытаний поверхность образцов тускнела и образовывался ряд язв. В целом коррозия была умеренной. В воде, насыщенной кислородом, на поверхности бериллия образуется толстый слой продуктов коррозии. В результате испытаний в указанной среде при температуре 300° С монокристаллов бериллия были сделаны следующие выводы а) при степени обжатия 21 1 бериллий достаточно стоек б) коррозионная стойкость бериллия тем выше, чем меньше в нем примесей. В потоке воды при температуре 205° С бериллий имеет малую эрозионно-коррозионную стойкость. При наличии напряжений коррозия бериллия не интенсифицировалась, в частности не появлялись трещины в металле. Между коррозионным поведением выдавленного и горячепрессованного бериллия почти нет никакой разницы. Присутствие в бериллии до 0,4% железа, до 1,05% алюминия, до 0,2% кремния, до 0,26% карбида бериллия практически не изменило его стойкости в воде, содержащей 0,005 мг перекиси водорода при температуре 85° С, при этом pH среды составляла 5,5—6,5. В ряде случаев при температуре 250° С присутствие в бериллии 0,23—0,46% железа повышало его коррозионную стойкость, а при температуре 325° С наличие даже более 0,3% железа не повышало его коррозионную стойкость.  [c.230]

Сплавы на кобальтовой основе ведут себя при температуре до 550° С практически так же, как и аустенитные хромоникелевые стали. Особое внимание как перспективным для использования в натриевых контурах уделяется ниобию, ванадию, бериллию, цирконию, молибдену и вольфраму. Но эти материалы весьма чувствительны к кислороду в натрии. Так, по опытам Дэвиса и Дрейкотта [224], для обеспечения скорости коррозии ниобия в несколько сотых миллиметра в год при температуре 450°С в натрии не должно быть более 0,0005 вес. % Оз. Непригодны для сколь-либо длительного применения в контурах с натрием и калием медь, магний и алюминий.  [c.282]

Коррозия бериллия в воде изучена мало, хотя она имеет отношение к процессу его производства. Химическое поведение бериллия, полученного методом пороп1ковой металлургии, более постоянно по сравнению с литым металлом, по-видимому, вследствие различия величины зерен. Присутствие в воде хлор- и сульфат-ионов, а также ионов меди и железа несколько увеличивает скорость точечной коррозии. Заготовки из горичепрессованиого в вакууме порошкового бериллия легко выдерживают испытания в воде в течение S6 час при 250°. Было найдено, что некоторые из таких бериллие-вых образцов даже более коррозионностойки в воде при 350 , чем цирконий, то1да как другие образцы в этих же условиях полностью разрушаются. Имеются данные, свидетельствующие о том, что коррозионная стойкость металлического бериллия в воде ири высоких температурах зависит от содержании примесей в нем, причем повышенное содержание железа оказывает благоприятное воздействие, тогда как содержание алюминия и кремния сверх допустимого количества является вредным.  [c.60]

Магиий, его сплавы и соединения. Сплавы магния являются низкотемпературными (температура плавления магния 650 °С) конструкционными материалами, коррозионно-стойкими против окисления на воздухе, в среде углекислого газа до температур приблизительно 400 С, но имеюш,ими низкое сопротивление коррозии в среде воды, жидкометаллических натрия, эв-тектик натрий—калий. По ядерным свойствам магний уступает лишь бериллию, Существенным недостатком магния является высокое термическое сопротивление. Теплопроводность магния и его сплавов [63—171 Вт/(м-при 20 °С] в 100 раз и более ниж г чем у сплавов алюминия.  [c.456]

Бериллиевые бронзы — это сплавы меди с бериллием. Они обладают высокой прочностью, упругостью и релаксационной стойкостью, а также высокой Электре- и теплопроводностью, высоким сопротивлением коррозии. Они не магнитны, не дают искру при ударе, технологичны. Комплекс указанных достоинств определяет назначение бе-риллиевых бронз как материала для пружин и упругих элементов ответственного назначения.  [c.746]


Из двойных сплавов А1 — Mg распространены составы с 10—-120/,, М , обладающие высокими механическими свойствами. Для борьбы с внутрикристал-лической ликвацией рекомендуется гомогенизация, обеспечивающая высокий предел прочности и повышенную пластичность. Литейные свойства этих сплавов низкие. Для борьбы с окислением рекомендуются добавка небольших количеств бериллия, плавка под слоем флюса и введение в формовочную землю, в качестве защитной добавки, борной кислоты. Примеси Ре, 51 и Си снижают коррозионную стойкость сплава. Обрабатываемость резанием — отличная, сплавы также хорошо полируются. Типичный представитель — сплав АЛ8, применяемый для отливки ответственных деталей и узлов самолёта, подвер кенных ударным нагрузкам и коррозионным воздействиям. Второй представитель — сплав АЛ13 — применяется в морском судостроении и авиастроении, когда требуется высокое сопротивление коррозии. Для улучшения литейных свойств практикуется добавка 0.8-1,ЗО/о 81.  [c.263]


Смотреть страницы где упоминается термин Бериллий Коррозия : [c.344]    [c.179]    [c.202]    [c.229]    [c.230]    [c.231]    [c.334]    [c.204]    [c.500]    [c.506]    [c.89]    [c.349]   
Конструкционные материалы Энциклопедия (1965) -- [ c.2 , c.5 ]



ПОИСК



Берилл

Бериллий

Бериллий коррозия, влияние глубины

Коррозия бериллия бронзы

Коррозия бериллия в расплавленных металлах и гидроокисях

Коррозия бериллия вольфрама

Коррозия бериллия газовая

Коррозия бериллия как дефект

Коррозия бериллия латуни

Коррозия бериллия локальная

Коррозия бериллия магниевых сплавов

Коррозия бериллия медных сплавов

Коррозия бериллия межкристаллитная

Коррозия бериллия металлов газовая

Коррозия бериллия молибдена

Коррозия бериллия нержавеющих сталей

Коррозия бериллия нержавеющих сталей-заменителей малоникелевых конструкционных

Коррозия бериллия никелевых сплавов

Коррозия бериллия ниобия

Коррозия бериллия структурная

Коррозия бериллия тантала

Коррозия бериллия титановых сплавов

Коррозия бериллия точечная

Коррозия бериллия хрома

Коррозия бериллия электрохимическая

Коррозия бериллия язвенная

Коррозия под напряжением бериллия

Питтинговая коррозия бериллия



© 2025 Mash-xxl.info Реклама на сайте