Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Бериллий коррозионная стойкость

Бериллий и особенно его сплав обладают при малой плотности (1,8 г/см- ) высокими модулем упругости и прочностью, размерной стабильностью, хорошей коррозионной стойкостью в ряде сред .  [c.600]

Титан и его сплавы относятся к числу химически активных материалов. В электрохимическом ряду напряжений титан находится между магнием, алюминием и бериллием, нормальный потенциал реакции Т -> - Тр +2е, отнесенный к нормальному водородному элементу, равен — 1,75 В, в то время как электродные потенциалы магния и алюминия равны соответственно —2,37 и —1,66 В. При этом высокая химическая активность титана сочетается с исключительно высокой коррозионной стойкостью. Последнее объясняется наличием на поверхности тонкой практически бездефектной пленки оксидов, мгновенно образующихся  [c.114]


Металлический бериллий можно применять и в качестве конструкционного материала для реактора, но при этом необходимо провести р д противокоррозионных мероприятий. Ввиду недостаточной коррозионной стойкости этого металла в чистом виде для изготовления тепловыделяющих элементов, отражателей и замедлителей в высокотемпературных ядерных реакторах используется окись бериллия ВеО. Изделия из окиси бериллия обладают необходимыми ядерными свойствами, термостойкостью и коррозионной стойкостью, но они так же хрупки, как и другие керамические материалы.  [c.14]

Конструкционные материалы, из которых изготовляется подсобное оборудование реакторов (чехлы для урановых блоков, трубопроводы для теплоносителя, контейнеры для жидкого ядерного горючего и т. д.), должны быть достаточно прочными, обладать коррозионной стойкостью и необходимыми ядерными свойствами. Таких металлов очень немного к ним следует отнести лишь цирконий, бериллий, алюминий и магний, имеющие поперечное сечение захвата тепловых нейтронов ниже 0,5 барна, а также их сплавы.  [c.14]

Окисление бериллия изучалось в сухом и влажном углекислом газе. Как протекает коррозионный процесс бериллия в этой среде, показано на рис. У-17. Аналогично цирконию коррозионная стойкость бериллия может быстро понижаться в сухом углекислом газе — начиная с температуры 650° С, во влажном углекислом газе—с этой же температуры, но примерно после 400-часового воздействия газа на металл.  [c.333]

Причиной ухудшения коррозионной стойкости бериллия в углекислом газе является, по-видимому, образование карбида берил-  [c.333]

Стойкость урановых стержней, как известно (см. 1-2), понижается с повышением температуры за пределы 600° С. При этой же температуре хорошую коррозионную стойкость в реакторах, охлаждаемых углекислым газом, обнаруживают бериллий, легированный им магний, нержавеющие стали, графит и керамические материалы. К керамическим материалам относится также и окись урана (ПОа),  [c.335]

Для работы в воде могут быть использованы алюминий и его сплавы, обладающие большей прочностью по сравнению с прочностью чистого металла. Технически чистый алюминий пригоден лишь для аппаратов, работающих при низких температурах воды (до 200° С), так как при более высоких температурах на поверхности металла образуются пузыри и происходит отслаивание. Присутствие легирующих элементов — никеля, железа, кремния, циркония, бериллия — повышает коррозионную стойкость алюминия.  [c.287]


Рис. 35. Влияние добавок циркония и бериллия в цирконовые покрытия на коррозионную стойкость стальных образцов при выдержке образцов в атмосфере 100%-ной относительной влажности Рис. 35. Влияние добавок циркония и бериллия в цирконовые покрытия на <a href="/info/33965">коррозионную стойкость</a> стальных образцов при выдержке образцов в атмосфере 100%-ной относительной влажности
Палладий, вводимый в качестве компонента для высокотемпературных припоев, значительно повышает их коррозионную стойкость, пластичность, а также способность растекаться и смачивать паяемую поверхность. Припои с палладием применяют для пайки самых разнообразных металлов, никелевых сплавов, золота, молибдена циркония, титана, вольфрама, бериллия, коррозионно-стойких сталей, жаропрочных сплавов.  [c.73]

Па. Соединения обладают высокой жаропрочностью и коррозионной стойкостью, однако пластичность их низкая. Длительный отжиг, который совмещают с процессом пайки, повышает пластичность соединений за счет диффузии бора, бериллия и кремния в паяемый металл. В процессе пайки возможно значительное растворение паяемого металла в припое, особенно тогда, когда между ними образуются легкоплавкие фазы. При пайке жаропрочных сплавов припоями, содержащими бор, происходит значительное растворение паяемого металла и проникновение припоя по границам зерен паяемого металла. Поэтому эти припои непригодны для пайки тонкостенных конструкций.  [c.242]

Бронзы по сравнению с латунью обладают лучшими механическими, антифрикционными свойствами и коррозионной стойкостью. В качестве легирующих элементов в бронзе используют олово, алюминий, никель, марганец, железо, кремний, свинец, фосфор, бериллий, хром, цирконий, магний и другие элементы.  [c.104]

Бериллиевая бронза хорошо поддается прокатке, хорошо сваривается и обрабатывается резанием. Коррозионная стойкость высокая. Ее применяют для изготовления токоведущих пружинящих контактов, мембран и сильфонов приборов и т. д. Бронза относительно дорога ввиду высокой стоимости бериллия.  [c.278]

Литейные сплавы группы Al—Mg обладают высокой коррозионной стойкостью, прочностью, вязкостью и хорошо обрабатываются резанием. Так как в их структуре нет эвтектики, они имеют низкие литейные свойства, отливки из них негерметичны. Примеси железа и кремния резко снижают их пластичность. Эти сплавы склонны к окислению при плавке. Дополнительное легирование бериллием, титаном и цинком устраняет этот недостаток. Закалка с 530 °С и последующее старение способствуют существенному повышению прочности. В основном эти сплавы применяются для отливки деталей приборов и деталей, работающих в условиях высокой влажности.  [c.107]

Марки магниевых сплавов, их составы и свойства приведены в табл. 6.3. Магниевые сплавы легко обрабатываются резанием и хорошо свариваются в Защитных средах. Их общИе недостатки низкая коррозионная стойкость, малые модули упругости, склонность к газо-насыщению и воспламенению. Добавки бериллия уменьшают склон-ность-к окислению. Все сплавы делятся на две группы деформируемые (МА) и литейные (МЛ).  [c.108]

Бериллий как легирующий элемент способствует старению сплавов меди, сопровождающемуся упрочнением, повышает теплопроводность, обеспечивает устойчивость против усталости и ударных нагрузок, хладостойкость, электропроводность, высокую коррозионную стойкость, близкую к коррозионной стойкости нержавеющей стали, высокую прочность и упругость, аналогичную для высокопрочных легированных сталей.  [c.196]

Ядерные топливные элементы, содержащие ядерное топливо, должны быть плакированы нерасщепляющимся материалом для предотвращения коррозии, деформации и потери радиоактивных частиц в охлаждающую жидкость. Ядерные топливные элементы плакируются различными металлами, в частности алюминием, коррозионно-стойкой сталью, магнием и его сплавами, цирконием и его сплавами, никелем, бериллием, ниобием, ванадием, а также графитом. Основными плакирующими металлами являются алюминий, цирконий, магний и коррозионно-стойкая сталь. Выбор плакирующих материалов зависит от их ядерных свойств, химической и физической совместимости с ядерным топливом, коррозионной стойкости и механических свойств. Плакированный слой должен обладать достаточно высоким пределом ползучести, чтобы оказать сопротивление деформации, вызванной давлением газов, вследствие процесса расщепления атомов.  [c.102]


Кроме специфических ядерных характеристик материалы замедлителей, отражателей и оболочек ТВЭЛов должны обладать высокой теплопроводностью, жаропрочностью, коррозионной стойкостью, сопротивлением ползучести. Бериллий лучше других материалов, в том числе графита, удовлетворяет этим требованиям.  [c.641]

К недостаткам магниевых сплавов наряду с низкой коррозионной стойкостью и малым модулем упругости следует отнести плохие литейные свойства, склонность к газонасыщению, окислению и воспламенению при их приготовлении. Небольшие добавки бериллия (0,02 - 0,05 %) уменьшают склонность к окислению, а кальция (до 0,2 %) — к образованию пор в отливках. Плавку и разливку магниевых сплавов ведут под специальными флюсами.  [c.378]

Титановые сплавы по сравнению с техническим титаном имеют при достаточно хорошей пластичности, высокой коррозионной стойкости и малой плотности более высокую прочность при 20 — 25°С и повышенных температурах. По сравнению с бериллием они более пластичны и технологичны, меньше стоят, безопасны для здоровья при обработке. По сравнению с алюминиевыми и магниевыми сплавами обладают более высокой удельной прочностью (см. табл. 13.1), жаропрочностью и коррозионной стойкостью.  [c.418]

Сплавы магния легируют марганцем, алюминием, цинком, цирконием, литием, бериллием, редкоземельными элементами. Мп повышает коррозионную стойкость сплава и одновременно увеличивает его прочность. Д1 и Zn увеличивают прочность и модифицируют (измельчают) структуру литых сплавов. Наиболее интенсивно измельчает зерно Zr, кроме того, он увеличивает пластичность. Значительно увеличивает пластичность Li, к тому же он снижает плотность сплава, Введение малых количеств Be (0,005. .. 0,02 %) почти полностью исключает воспламенение магния при нагреве. РЗЭ увеличивают сопротивление ползучести сплава при высоких температурах (до 250 С).  [c.112]

Технический бериллий представляет собой хрупкий металл с прочностью около 30 кгс/мм и удлинением 1—2%. Его пиякая пластичность может быть обусловлена недостаточной чистотой, так как этот металл особенно чунстни-телен к загрязнениям. Коррозионная стойкость бериллия высокая. О бериллии как конструкционном материале будет сказано дальше.  [c.558]

Ввиду малой величины эффективного захвата тепловых нейтронов, высокой температуры плавления и высокой коррозионной стойкости бериллий можно применять для плакировки стержней ядерного горючего, однак о чрезвычайно высокая стоимость бериллия ограничивает его использованне. Для этой цели в настоящее время успешно применяют более дешевый металл — цирконий .  [c.558]

Сплавы А1—Mg. Сплавы алюминия с магнием (табл. 23) имеют низкие литейные свойства, так как они содержат мало эвтектики. Характерной особенностью этих сплавов является хорошая коррозионная стойкость, повышенные механические свойства и обрабатываемость резанием. Добавление к сплаву (9,5—11,5 % Mg) модифицирующих присадок (Ti, Zr) улучшает механические свойства, а бериллия уменьишет окисляемость расплава, что позволяет вести плавку без защитных флюсов,  [c.336]

Бериллиевые бронзы. Содержат 2...2,5% Ве. Эти сплавы упрочняются термической обработкой. Предельная растворимость бериллия в меди при 866 составляет 2,7%, при 600 °С - 1,5%, а при 300 °С всего 0,2%. Закалка проводится при 780 С в воде и старение при 300 "С в течение Зч. Сплав упрочняется за счет выделения дисперсных частиц у-фазы СпВе, что приводит к резкому повышению прочности до 1250 МПа при 5 = 3...5%. Бронзы БрБ2, БрБНТ1,9 и БрБНТ1,7 имеют высокую прочность, упругость, коррозионную стойкость, жаропрочность, немагнитны, искробезопасны (искра не образуется при размыкании электрических контактов). Применяются для мембран, пружин, электрических контактов.  [c.117]

Титан в настоящее время получается методами порошковой металлургии в небольших масштабах по сравнению с методами дугового плавления (см. стр. 576—577, табл. 3 и 4). Цирконий и его сплавы с оловом, полученные методами порошковой металлургии, содержат повышенное количество кислорода и азота и не обладают той высокой коррозионной стойкостью, какую имеют сплавы, полученные дуговым плавлением. Методы порошковой металлургии применяются наряду с другими методами для производства заготовок и изделий из тория, ванадия и бериллия. Более подробные сведения о редких и тугоплавких металлах см. в гл. VIII Редкие металлы и их сплавы и X Титан и его сплавы .  [c.598]

Цирконий и его сплавы. Основное применение как конструкционный материал цирконий находит в ядерной технике — в атомных реакторах — вследствие особого свойства — слабо поглощать тепловые нейтроны. О материале, обладающем таким свойством, говорят, что он имеет малое поперечное сечение поглощения тепловых нейтронов. У циркония сечение поглощения тепловых нейтронов равно 0,18-10" см , у алюминия 0,2Ы0 см , однако он уступает цирконию в коррозионной стойкости, чем и объясняется ислользование циркония. Меньшее сечение поглощения тепловых нейтронов, чем у циркония, имеют магний (0.059-10-2 сл ) и бериллий (0,009-lO см ).  [c.326]

Бериллий. Бериллий, используемый ныне как легирующая добавка <в сплавах меди, никеля, алюминия), обладая наименьшим из всех металлов сече-инем захвата тепловых нейтронов и достаточно высокими коррозионной стойкостью и жаропрочностью, имеет перспективу конструкционного материала ядерной энергетике. Обладая очень высокой удельной прочностью (выше, чем у титана) вплоть до 500 °С, бериллий найдет применение как конструкционный материал и в технике летательных аппаратов (в особенности ракет). Непреодолимым пока препятствием к использованию бериллия в качестве конструкционного материала является малая пластичность. Весьма характерной особенностью бериллия является анизотропность, возникающая как при литье и остывании, так и в результате механических деформаций. Интересно заметить, что при комнатной температуре и при 700 С материал в отношении каждой из характеристик, 6 и гр, практически изотропен. При промежуточных же температурах различие в величинах каждой из упомянутых характеристик для двух разных лаправлений, проходящих через точку тела, максимально и достигает 400 и 200% соответственно, т. е. материал существенно анизотропен. Механические харак теристики бериллия в значительной мере зависят от способа получения полуфабрикатов его. Так, например, Оп, (в продольном направлении) колеблется между 65 и 28 кПмм первое число относится к полуфабрикатам, получаемым тепловым выдавливанием при 400—500 °С, второе — к выдавленному слитку.  [c.327]


Литейные свойства невысокие, сплав требует усиленного питания во избежание рыхлот и трешин. Из всех практически применяемых сплавов на алюминиевой основе данный сплав наиболее чувствителен к примесям железа и кремния, снижающим его прочность и особенно пластичность. Примесь меди ухудшает коррозионную стойкость. Добавление очень малых количеств бериллия с титаном снижает окисляемость сплава в жидком состоянии. Без бериллия требуется применение защитных присадок к формовочной земле и флюса при плавлении во избежание окисления жидкого сплава и образования черного излома , сопровождающегося понижением механических свойств. При литье в землю рекомендуется усиленное применение холодильников.  [c.154]

При испытании металлов и сплавов в ртути добавление к ним титана и магния увеличивает коррозионную стойкость первых [1,61], [1,65]. Предполагается, что окислы, образующиеся в результате взаимодействия титана и магния с кислородом, препятствуют взаимодействию металлов с ртутью. При температуре 600° С в ртути, ингибированной титаном и магнием, достаточной стойкостью обладают низкоуглеродистая сталь сталь, легированная 20% молибдена сталь, легированная 8% хрома, 0,5% алюминия и 0,3% молибдена сталь, легированная 5% хрома, 0,5% молибдена и 1,5% кремния а также вольфрам и молибден. При температуре 500°,С можно применять стали легированную 1) 5% хрома 2) 1,5% хрома и 1,3% алюминия 3) 5% хрома, 1,2% меди или 4,5% молибдена ферритные хромистые стали. Нестойки в ртути аустенитные нержавеющиестали, бериллий (при температуре300°С), тантал, ниобий, кремний, титан, ванадий, никель, хром и их сплавы, кобальт, платина, марганец, цирконий, алюминий, золото и серебро. Чтобы ингибировать ртуть, в нее достаточно ввести 10 мг1кг титана. Менее экономически выгодным ингибитором является цирконий [1,65].  [c.53]

Увеличение скорости потока воды до 2,5 м1сек несколько тормозит язвенную коррозию. При температуре воды 65—85° С и скорости потока 9 м/сек скорость коррозии выдавленного бериллия составляла 0,002—0,003 мм/год. С ростом температуры от 30 до 90° С скорость коррозии бериллия возрастает с 0,0025 мм/год до 0,08 мм/год. В потоке воды скорость коррозии бериллия с температурой увеличивается еще в большей степени и равна при 90° С— 0,15 мм/год. В деаэрированной воде при температуре 260° С в результате тридцатидневных испытаний поверхность образцов тускнела и образовывался ряд язв. В целом коррозия была умеренной. В воде, насыщенной кислородом, на поверхности бериллия образуется толстый слой продуктов коррозии. В результате испытаний в указанной среде при температуре 300° С монокристаллов бериллия были сделаны следующие выводы а) при степени обжатия 21 1 бериллий достаточно стоек б) коррозионная стойкость бериллия тем выше, чем меньше в нем примесей. В потоке воды при температуре 205° С бериллий имеет малую эрозионно-коррозионную стойкость. При наличии напряжений коррозия бериллия не интенсифицировалась, в частности не появлялись трещины в металле. Между коррозионным поведением выдавленного и горячепрессованного бериллия почти нет никакой разницы. Присутствие в бериллии до 0,4% железа, до 1,05% алюминия, до 0,2% кремния, до 0,26% карбида бериллия практически не изменило его стойкости в воде, содержащей 0,005 мг перекиси водорода при температуре 85° С, при этом pH среды составляла 5,5—6,5. В ряде случаев при температуре 250° С присутствие в бериллии 0,23—0,46% железа повышало его коррозионную стойкость, а при температуре 325° С наличие даже более 0,3% железа не повышало его коррозионную стойкость.  [c.230]

Весьма перспективны сплавы магния с бериллием. Растворимость бериллия в магнии весьма незначительна (0,05%). Хотя сплавы этой категории (магноксы) обнаруживают повышенную коррозионную стойкость, они, однако, ограничивают верхний предел температуры тепловыделяющих элементов до 450—460° С. В покрытиях же, полученных совместной конденсацией магния с бериллием, бериллия содержится больше, чем указано выше, поэтому этот сплав имеет большую коррозионную стойкость. Их коррозионная стойкость так значительна, что они временно могут переносить действие угольной кислоты при температуре, превышающей точку плавления магния (650° С) на 100 — 150° С. Защитные свойства оксидной пленки, образующейся на сплаве, улучшаются обогащением ее окисью бериллия это происходит в процессе дистилляции.  [c.331]

Коррозия бериллия в воде изучена мало, хотя она имеет отношение к процессу его производства. Химическое поведение бериллия, полученного методом пороп1ковой металлургии, более постоянно по сравнению с литым металлом, по-видимому, вследствие различия величины зерен. Присутствие в воде хлор- и сульфат-ионов, а также ионов меди и железа несколько увеличивает скорость точечной коррозии. Заготовки из горичепрессованиого в вакууме порошкового бериллия легко выдерживают испытания в воде в течение S6 час при 250°. Было найдено, что некоторые из таких бериллие-вых образцов даже более коррозионностойки в воде при 350 , чем цирконий, то1да как другие образцы в этих же условиях полностью разрушаются. Имеются данные, свидетельствующие о том, что коррозионная стойкость металлического бериллия в воде ири высоких температурах зависит от содержании примесей в нем, причем повышенное содержание железа оказывает благоприятное воздействие, тогда как содержание алюминия и кремния сверх допустимого количества является вредным.  [c.60]

Тефлон — фторированный этилеи — пропиленовый полимер обладает высокой стойкостью. Тефлон используют качестве термо- и коррозионно-бойкого материала в сочетании с титаном, танталом и бериллием ввиду Почти одинаковой коррозионной стойкости.  [c.391]

Коррозионностойкие литейные алюминиевые сплавы. Сплавы систем А1—М (АЛ8, АЛ27) и А1—М —7п (АЛ24) обладают высокой коррозионной стойкостью во многих агрессивных средах, обрабатываются резанием и свариваются. Дополнительное легирование сплавов системы А1—Mg бериллием, титаном и цирконием вызывает измельчение зерна и затормаживание процесса естественного старения, приводящего к снижению пластичности и коррозионной стойкости. Поэтому сплавы системы А1—Mg упрочняются только закалкой в масле без последующего старения (АЛ27, Т4  [c.189]

К перспективным относятся КМ с малой плотностью на основе бериллия и магния Be - ВеО, Be - ВегС и Mg - MgO. Однако они не нашли большого применения из-за технологических сложностей и низкой коррозионной стойкости.  [c.442]

Небольшие количества бериллия применяют для легирования специальных сплавов на основе меди, никеля, алюминия. Введение его в эти пластичные металлы сильно повышает их твердость и прочность. Так, прочность берил-лиевой бронзы ( u-f2—3 % Be) достигает 1800 МПа (как у высокопрочных сталей) и в то же время не дает искр при ударах. Сплавы на основе Си, Ni или А1 с Be имеют высокую коррозионную стойкость в сухом и влажном воздухе, немагнитны, обладают повышенной упругостью и прочностью и мало изменяют свои свойства при нагреве до 300—400 °С. Все это позволяет применять такие сплавы для деталей приборов и механизмов. Примесь 0,5—1,5 % Be предохраняет серебро от тускнения. Есть сведения, что добавка около 0,01 % Be в жидкий магний увеличивает жаростойкость расплава магния, устраняя опасность его вспышки, и позволяет поднимать температуру расплавленного магния от 680 до 800 X, что иногда необходимо.  [c.277]


Смотреть страницы где упоминается термин Бериллий коррозионная стойкость : [c.355]    [c.1226]    [c.574]    [c.560]    [c.38]    [c.74]    [c.14]    [c.229]    [c.231]    [c.457]    [c.196]    [c.634]    [c.262]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.276 ]



ПОИСК



Берилл

Бериллий

Стойкость коррозионная



© 2025 Mash-xxl.info Реклама на сайте