Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механическая асинхронного электродвигателя

Рис. 74. Механическая характеристика электродвигателя переменно о тока (асинхронного). Рис. 74. <a href="/info/88243">Механическая характеристика электродвигателя</a> переменно о тока (асинхронного).

На рис. 10.7 и 10.8 показаны механические характеристики электродвигателей постоянного тока. На рис. 10.7 момент М = = М (со) изменяется линейно, а на рис. 10.8 — по более сложному закону. Кривые Р = Р (ш) имеют параболический характер. На рис. 10.9 показана механическая характеристика водяной турбины. Все механические характеристики вида М = УИ (со) для машин-двигателей, показанные на рис. 10.7—10.9, являются нисходящими кривыми. На рис. 10.10 показаны механические характеристики асинхронного электродвигателя трехфазного тока. Эти характеристики имеют как нисходящий, так и восходящий участки кривой.  [c.211]

Характеристики сил, зависящих от скорости. На рис. 4.1 показана механическая характеристика асинхронного электродвигателя — зависимость движущего момента от угловой скорости ротора машины. Рабочей частью характеристики является участок аЬ, на котором движущий момент резко уменьшается даже при незначительном увеличении скорости вращения.  [c.141]

Для асинхронных электродвигателей с к. з. ротором и для синхронных двигателей механическая характеристика определяет его пусковой момент. При оценке требуемого пускового момента двигателя следует учитывать, что у ряда механизмов, в особенности таких, где трение составляет значительную часть нагрузки, пусковой момент превышает на 30—50% расчетный статический момент сопротивления при движении.  [c.127]

Рассмотрим механическую характеристику механизма, приводимого в движение асинхронным электродвигателем (рис. 22.6).  [c.288]

Рис. 52. Механическая характеристика асинхронного электродвигателя трехфазного тока. Рис. 52. <a href="/info/430106">Механическая характеристика асинхронного</a> электродвигателя трехфазного тока.
Рис. 11.7. Механическая характеристика Мд ((о) асинхронного электродвигателя Мд — пусковой момент — максимальный Рис. 11.7. <a href="/info/7719">Механическая характеристика</a> Мд ((о) <a href="/info/12082">асинхронного электродвигателя</a> Мд — <a href="/info/29404">пусковой момент</a> — максимальный

Для привода технологических машин обычно применяют асинхронные электродвигатели, у которых угловая скорость ротора меняется в зависимости от нагрузки. Механическая характеристика Л4д(со) такого двигателя (см. рис. 11.7) сложнее, чем у других типов двигателей. При расчете маховика в этом случае учитывают минимальную величину (о ин1 которая не должна быть меньше значения, соответствующего опрокидывающему моменту двигателя Л4 акс- Приведенный момент М1 сил сопротивления может являться функцией угла поворота ф или времени t.  [c.383]

Рис 12.6. Упрощенная механическая характеристика асинхронного электродвигателя  [c.385]

На рис. 2.23, а, б представлены механические характеристики электродвигателей постоянного тока последовательного возбуждения и асинхронного соответственно, а на рис. 2.23, в — характеристика вентилятора. Все эти характеристики вида М = М (ш).  [c.59]

В качестве примера на рис. 6.2 приведена механическая характеристика асинхронного электродвигателя, на которой движущий момент Мд и мощность Л д показаны в виде функции угловой скорости 0) вала двигателя.  [c.130]

Рис. 2. Механические характеристики асинхронного электродвигателя, полученные на модели Рис. 2. <a href="/info/430106">Механические характеристики асинхронного</a> электродвигателя, полученные на модели
Учет механических характеристик электродвигателей, особенно наиболее распространенных асинхронных двигателей, как и характеристик гидравлических турбомуфт, приводит к существенной нелинейности получаемых динамических уравнений, что весьма затрудняет доведение решений до конечных результатов. Поэтому в ряде случаев приходится заменять кривые характеристик двигателей системой сопрягаемых прямых или вместо точного уравнения характеристик применить приближенное, при котором непосредственное интегрирование становится возможным.  [c.6]

Аналитическое выражение зависимости между моментом и угловой скоростью ротора для двигателей многих типов весьма громоздко. Кроме того, как показывает ряд исследований, при питании мощных электродвигателей машин от маломощной участковой сети механическая характеристика двигателя может значительно отличаться от номинальной в связи с падением напряжения. Ввиду этого при расчетах имеет смысл пользоваться упрощенной зависимостью, определенной по построенной опытным путем действительной механической характеристике двигателя в условиях эксплуатации. При этом для наиболее распространенных асинхронных электродвигателей удобно принять допущение, что в пределах первого участка характеристики, т. е. во время, за которое крутящий момент двигателя возрастает от номинальной до максимальной величины, угловое замедление его ротора изменяется по линейному закону. Вносимая таким допущением погрешность может быть определена путем сопоставления зависимости (<р), полученной на базе принятого допущения, с исходной механической характеристикой двигателя.  [c.388]

Выражение (12. 18) справедливо для асинхронных электродвигателей с нормальным ротором при некоторых ограничениях времени протекания переходного процесса опрокидывания электродвигателя. Если импульс нагрузки приложен весьма непродолжительное время, например, меньше, чем электромагнитная постоянная времени электродвигателя Т , то, кроме механической 420  [c.420]

Фиг. 13. Основные точки механической характеристики трехфазного асинхронного электродвигателя Фиг. 13. <a href="/info/61733">Основные точки</a> <a href="/info/7719">механической характеристики</a> трехфазного асинхронного электродвигателя

Как указано выше, механические характеристики двигателей задаются в виде функции одного параметра, а именно угловой скорости его ротора, но в общем случае движущие силы подчиняются более сложным законам. Например, механическая характеристика электродвигателя представляет собой зависимость развиваемого им момента от угловой скорости ротора. Такой зависимостью можно пользоваться только для определения угловой скорости ротора двигателя, преодолевающего постоянную нагрузку. Если же угловая скорость ротора изменяется, то изменяется и сила тока двигателя, а вместе с током происходит изменение и развиваемого двигателем момента. Таким образом, развиваемый электродвигателем момент зависит не только от угловой скорости, но и от углового ускорения его ротора. Влияние углового ускорения ротора на развиваемый им момент оказывается более существенным для электродвигателей постоянного тока, чем для асинхронных двигателей. Влияние углового ускорения ротора на развиваемый им момент получается более заметным при быстро протекающих переходных процессах, когда происходит резкое изменение нагрузки двигателя. Во многих случаях практики влиянием углового ускорения на изменение момента двигателя можно пренебрегать.  [c.23]

Один из таких инструментов показан на рис. 57. Это механический шабер со встроенным в корпус асинхронным электродвигателем мощностью 90 вт, работающим от трехфазного тока 36 в, 200 гц. Длина хода ножа-пластинки до 20 мм, частота 1200 двойных ходов в минуту. По такой же схеме устроены шаберы с пневматическим двигателем.  [c.96]

Рассмотрим эквивалентные схемы замещения этих систем. Механическая система, связанная с приводом, насоса, представлена на рис. 2. Скольжение асинхронного электродвигателя под нагрузкой (см. статическую-характеристику на рис. 3) учтено двумя элементами генератором скорости со и демпфером с , который соединяет его со всей остальной системой.  [c.44]

Вид механической характеристики, которая определяет степень зависимости скорости от нагрузки (момента) на валу двигателя. Двигатели параллельного возбуждения постоянного тока и асинхронные электродвигатели переменного тока обладают жесткими естественными характеристиками. Их скорость мало зависит от нагрузки. Такая характеристика целесообразна для очень многих производственных механизмов насосов, вентиляторов, большинства станков, конвейеров, механизмов передвижения кранов и т. д.  [c.431]

Магнитные пускатели. Нереверсивные включают в себя один трехполюсный контактор переменного тока и тепловое реле (последнее может отсутствовать). Реверсивные магнитные пускатели имеют два механически сблокированных контактора. Применяются для пуска асинхронных электродвигателей с короткозамкнутым ротором мощностью до 55 кет при напряжении 380 в.  [c.436]

Механическая характеристика (см. фиг. 13). Двигатели параллельного возбуждения постоянного тока и асинхронные электродвигатели переменного тока обладают жесткими характеристиками (в рабочей их части). Скорость этих двигателей мало зависит от нагрузки. Такие характеристики целесообразны для насосов, вентиляторов, большинства станков, конвейеров, механизмов передвижения кранов и т. д.  [c.237]

Двухдвигательный привод с асинхронными электродвигателями. Жесткие характеристики при низких рабочих скоростях могут быть получены при работе двух асинхронных машин на общую механическую систему, причем одна из машин работает в двигательном, а другая — в тормозном режиме.  [c.514]

Асинхронный электродвигатель (АЭД) является наиболее распространенным видом привода механических систем. Около половины всей электрической энергии, вырабатываемой в стране, расходуется асинхронными двигателями. В то же время надежность этих машин еще далека от оптимального уровня. Достаточно сказать, что в СССР в течение года подвергается капитальному ремонту около 20% установленных АЭД [1]. Появилась необходимость разработки методов ускоренных испытаний АЭД, позволяющих оценивать надежность еще на стадии проектирования. Если в отношении двигателей мощностью до 100 кВт такие методы разработаны достаточно полно [2, 3], то для двигателей мощностью свыше 100 кВт их пока нет. Распространение имеющихся методик на крупные машины не представляется возможным ввиду высокой стоимости обеспечения требуемой выборки (15—20 машин).  [c.38]

Когда требования к точности измерения уравновешивания еще не были особенно высокими, а следовательно и не было необходимости в сильной фильтрации рабочего сигнала от помех, применялись фильтры с добротностью 8—12. При этом случайные изменения скорости вращения балансируемого ротора не вызывали ощутимых амплитудных и фазовых ошибок. В связи с этим определение угловой координаты неуравновешенности при применении резонансного фильтра оказывалось возможным после фильтрации сигнала, как это показано на блок-схеме на фиг. 19. Выбор работы механической части в зарезонансной зоне d/ Oq >3 практически гарантировал от фазовых ошибок, а измерение амплитуды.при применении скоростных датчиков имело погрешность, прямо пропорциональную изменению скорости вращения ротора. Так как изменение этой угловой скорости при правильно подобранной мощности асинхронного электродвигателя укладывается обычно в 2—3%, то и амплитудными ошибками вполне можно пренебречь. Погрешности электрической части схемы, если 34  [c.34]

Механические вибрации асинхронных двигателей, вызванные неуравновешенностью роторов. Доклад на И конференции специалистов по единой серии асинхронных электродвигателей мощностью 0,6—100 кет. Варшава, 1957 г.  [c.283]


Регулирование частоты вращения питательных электронасосов, приводимых асинхронными электродвигателями, может производиться изменением скольжения гидромуфт, а питательных турбонасосов— изменением частоты вращения приводных турбин. Особенности работы приводных турбин энергоблоков, работающих при ПД и СД, будут рассмотрены ниже. К. п. д. гидромуфты т)гм в первом приближении может быть оценен по формуле т)гм = т1м(1 — 5), где Т1м = 0,97-=-0,98—механический к. п. д. гидромуфты s = 1 — СО2/СО1 — скольжение oi и С02 —частота вращения ведущего и ведомого валов. Поскольку при номинальном режиме гидромуфта имеет скольжение 2—3%, включение гидромуфты снижает к. п. д. привода насоса на 4—5%. При частичных нагрузках по мере увеличения скольжения к. п. д. гидромуфты существенно понижается. Следует иметь в виду, что регулировочный  [c.145]

Какими преимушествами и недостатками обладают асинхронные двигатели Приведите механическую характеристику асинхронного электродвигателя и опишите ее характерные точки. Что такое естественная и искусственная механические характеристики Какой участок механической характеристики считается рабочим, к какому виду по жесткости он относится Каковы значения коэффициента перегрузочной способности асинхронных двигателей Что такое пусковой момент асинхронного двигателя Каковы его значения для двигателей короткозамкнутых и с фазным ротором Для чего в цепь ротора фазного двигателя включают дополнительные сопротивления Какие механические характеристики им соответствуют Опишите запуск электродвигателя с фазным ротором с использованием пусковых сопротивлений.  [c.75]

Механическая характеристика электродвигателя переменного тока (асинхронного) изображена на рис. 4.3, г, а центробежного вентилятора — на рнс. 4.3, д. Механическая характеристика строгального станка (рис. 4.3, е) может быть представлена равенством Fpe3 = fiKj s), где / рез — снла резания, приложенная к резцу  [c.116]

Исходные данные перечислены в начале 4.6. Так как станок запускается в режиме холостого хода, т. е. когда нет процесса резания, то вся энергия электродвигателя расходуется на увеличение кинетической энергии агрегата и на преодоление потерь трения. Наиболее сил1)Но трение проявляет себя между ползуном 5 и неподвижной направляюигей. Силу трения / , в этой поступательной паре в первом приближении можно принять постоянной (рис. 4.16, б). Трение в других кинематических парах учитывать не будем, поскольку оно относительно слабо выражено. Точно так же опустим влияние сил тяжести. Механическая характеристика асинхронного электродвигателя /Vl(iOp i) изображена на рис. 4.16, в. Пусть начальные условия движения таковы при t = имеем ((, = =  [c.161]

Если механизм приводится в движение двигателем, механическая характеристика которого нелинейна, то для получения аналитического решения уравнения движения эту характеристику можно аппроксимировать кривой второго или более высокого порядка. Подобные случаи характерны для двигателей постоянного тока с последовательным возбуждением, крановых асинхронных электродвигателей, а также для гидро- и тепловых двигателей. Большое значение для точности решения имеет характер изменения MOMeHia сопротивления. Если движущий момент аппроксимировать отрезком параболы, то при J = onst уравнение движения будет  [c.290]

На рис. 299 показана механическая характеристика асинхронного электродвигателя трехфазного тока. Механическая характеристика Мд = -Мд( ) асинхронного электродвигателя состоит из двух частей первая — восходящая, неустойчивая — часть Оа расположена левее Мтах вторая — устойчивая — часть аЬ — правее. Часть аЬ — рабочая. При некотором значении угловой скорости со, соответствующей номинальному моменту М двигателя и номинальной скорости Шн двигатель развивает максимальную мощность. Угловую скорость СОс, при которой Мд = О, называют синхронной с этой скоростью ротор вращается при холостом ходе. Точка а диаграммы определяет положение максимального опрокидываюихего момента Мщах и минимально допустимой угловой скорости (Omin рабочей части характеристики, а точка О определяет начальный пусковой момент Mq при нулевой угловой скорости ротора. Условия работы электродвигателей при низких скоростях вращения значительно ухудшаются.  [c.205]

Па-рис. 0. 1, й сплошной линией показана механическая характеристику короткозамкнутого асинхронного электродвигателя переменного тока при обычном исполнении ротора. Она отличается суйтествённой Нелинейностью и рассчитана на машины, запускаемые  [c.17]

Тормозы переменноготока бывают трёх типов 1) с электромагнитами 2) с серводвигателем 3) с центробежным масляным насосом и электродвигателем (гидроэлектрический привод тормоза). Тормозы с электромагнитами переменного тока включаются в цепь параллельно двигателю. Во избежание гудения их делают всегда трёхфазными и в отличие от электромагнитов постоянного тока — с сердечниками из листового железа для уменьшения токов Фуко. К недостаткам тормозных электромагнитов переменного тока относятся большие толчки тока при включении, что при механических неисправностях может приводить к перегоранию катушек. Поэтому для двигателей переменного тока часто применяются тормозы с короткозамкнутым асинхронным электродвигателем. Последний рассчитан на длительную работу под током в неподвижном состоянии. Этот двигатель связан передачей с зубчатым сектором, который перемещает рычаг, воздействующий на тормозные колодки. Для освобождения тормозных колодок двигатель должен сделать только 1,5—2 оборота, после чего он будет стоять до тех пор, пока не будет отключён от сети. При отключении двигатель возвращается в исходное положение под влиянием груза на тормозном рычаге.  [c.53]

Регулирование скорости асинхронных электродвигателей. Для двигателей с фазовым ротором применяется регулирование скорости реостатом в цепи ротора. Схема регулирования не отличается от пусковой схемы, но реостат должен быть рассчитан на длительный режим. Этот способ дает возможность получить разные скорости (ниже синхронной) при наличии более или менее значительного момента статического сопротивления на валу двигателя. Механические характеристики приведены на фиг. 13, на которой пока.чано, что при Af = Afj можно получить скорости Пх, /12, щ а rig.  [c.419]

Насос 9, питающий гидродвигатель /, приводится во вращение от асинхронного электродвигателя. Производительность насоса регулируется поворотом его блока относительно корпуса. Число оборотов выходного вала гидродвнгателя I зависит от угла поворота цилиндрового блока насоса. Угол наклона блока гидродвигателя не регулируется, его крутящий момент постоянный и определяется настройкой предохранительных клапанов в клапанной коробке 10 на давление, превышающее в 4 раза давление, необходимое для развития номинального крутящего момента, что обеспечивает высокую жесткость механической характеристики гидропривода. Гидродвигатель 1 и насос 9 соединяются трубопроводами по замкнутой схеме. Нерегулируемый щестеренчатый насос 7, примененный для подпора и покрытия утечек, которые могут произойти в насосе 9, гидродвигателе и соединяющих их трубопроводах, приводится во вращение от того же электродвигателя, что и насос 9. Нагнетаемая этим насосом рабочая жидкость подается под давлением, устанавливаемым клапаном 6, через фильтр 5 к управляющему золотнику 4, а также к клапанной коробке 10.  [c.414]


В качестве привода гидропередач с объемным управлением, используемых в станках, чаще всего применяются асинхронные электродвигатели. Механическая характеристика такого двигателя, как известно, нелинейна. Однако в области вращения электродвигателя с крутящим моментом, меньшим опрокидывающего момента, она близка к линейной характеристике и коэффициент скольжения 5ээв можно принять равным коэффициенту S  [c.504]

Кинематическая схема токарно-винторезного станка модели 16К20. Привод главного движения в подавляющем большинстве современных токарно-винторезных станков состоит из односкоростного (реже многоскоростного) асинхронного электродвигателя трехфазного тока и ступенчатой механической коробки скоростей. От электродвигателя Ml с Идц = 1460 мин" (рис. 4.3) через клиноременную передачу с диаметром шкивов 140 и 268 мм вращается вал I коробки скоростей, на котором установлены свободно вращающиеся зубчатые колеса с числом зубьев г = 56 и z = 51 для прямого вращения шпинделя (по часовой стрелке) и  [c.136]

На механической характеристике асинхронного электродвигателя видно, что частота вращения ротора может быть ниже, равна или выше синхронной. Поэтому рассматриваемый электродвигатель называется асинхронным (несинхронным). Разность между синхронной частотой и частотой вращения ротора называется проскальзыванием частоты ротора относительно частоты врзш,ения электромагнитного поля.  [c.266]


Смотреть страницы где упоминается термин Механическая асинхронного электродвигателя : [c.172]    [c.320]    [c.271]    [c.21]    [c.507]    [c.31]    [c.31]    [c.224]    [c.57]   
Строительные машины (2002) -- [ c.30 ]



ПОИСК



Механические характеристики асинхронных электродвигатеРегулирование частоты вращения асинхронных электродвигателей

Механические характеристики асинхронных электродвигателей в режимах динамического торможения

Механические характеристики асинхронных электродвигателей в режимах динамического торможения в системах импульсного регулирования

Механические характеристики асинхронных электродвигателей в режимах динамического торможения параметрического регулирования

Механические характеристики асинхронных электродвигателей в режимах динамического торможения фазового регулирвания

Механические характеристики асинхронных электродвигателей в режимах динамического торможения частотного регулирования

ЭЛЕКТРОДВИГАТЕЛИ 357 ЭЛЕКТРОДВИГАТЕЛИ

Электродвигатели Механические характеристики Схемы асинхронные 19, 24—25 — Частотное управление 25 Режим пуска

Электродвигатели асинхронные

Электродвигатель



© 2025 Mash-xxl.info Реклама на сайте