Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Усталость — Сопротивление — Влияние

Особенно эффективно ППД для деталей, имеющих различные концентраторы напряжений, в значительной степени снижающие их сопротивление усталости. Объяснение факта большего влияния поверхностного наклепа на сопротивление усталости деталей, содержащих концентраторы напряжений, состоит в том, что благоприятные остаточные напряжения сжатия, возникающие при этой обработке, обладают, как и напряжения от рабочей нагрузки, свойством концентрироваться у выточек, галтелей, пазов и других геометрических элементов детали.  [c.138]


Дуговая сварка под флюсом может увеличить или уменьшить сопротивление росту трещины усталости данного сплава в зависимости от места расположения трещины и ориентировки образца. Для образцов ориентировки ПВ скорость роста трещины усталости в зоне термического влияния выше, чем у основного металла однако на образцах ориентировки ПД наблюдается обратная зависимость. Вязкость разрушения сварных соединений J(с. в зоне термического влияния на 20 % ниже по сравнению с основным металлом (на образцах ориентировки ПД).  [c.235]

Следовательно, влияние частоты нагружения на усталость можно рассматривать как влияние на сопротивление усталости (пластическому деформированию) скорости деформирования, продолжительности действия напряжений и повышения температуры за каждый цикл нагружения.  [c.242]

Тепловой эффект снижает сопротивление деформированию. Влияние его тем значительнее, чем больше скорость и степень деформации, чем меньше теплоемкость, теплопроводность и удельная поверхность металла. Влияние теплового эффекта зависит также от вида нагружения и охлаждения образца в процессе циклического нагружения. Надо полагать, что в условиях высокочастотного нагружения вследствие затрудненного теплоотвода при быстром протекании динамической деформации, развивающегося по плоскостям скольжения тепла достаточно для частичного снятия наиболее неустойчивых искажений решетки, обусловленных неоднородностью локальной пластической деформации. В отдельных случаях этого тепла может быть достаточно и для возникновения вспышки рекристаллизации вблизи плоскости сдвига, вызывающей снижение сопротивления усталости. При низких частотах нагружения (малые скорости деформирования) влияние теплового отдыха уменьшается, так как скорость деформирования невелика и развивающееся по плоскостям скольжения тепло успевает рассеяться.  [c.243]

Качество обработки поверхности оказывает весьма сильное влияние на сопротивление усталости, что связано с влиянием концентрации напряжений вследствие микронеровностей поверхности, а также остаточных напряжений и наклепа тонкого поверхностного слоя, возникающих при механической обработке.  [c.117]


Протекание усталостных процессов в области пластических деформаций при повышенных температурах определяется не только цикличностью изменения напряжений или деформаций, но также и временем нагружения, к формой цикла, т, е. эффектом частоты нагружения и его пауз. При малоцикловой усталости сниже-ийе частоты приводит к уменьшению сопротивления усталости Вследствие более интенсивного влияния пластических деформаций в этих условиях [26].  [c.14]

Сопротивление усталости. Гальванические покрытия снижают сопротивление усталости основного металла. Наибольшее влияние на снижение сопротивления усталости сталей (особенно высокопрочных) оказывают храмовые покрытия, что обусловлено в основном низкой прочностью и пластичностью хрома и наводорожива-иием стали.  [c.51]

В диапазоне значений, характерных для балок крановых металлоконструкций, продольные напряжения в поясном листе от общего изгиба балки практически не оказывают влияния на сопротивления материала усталости. Вопрос о местном влиянии подвижной нагрузки на балку с установкой рельса над стенкой рассмотрен в работе [10].  [c.248]

Эффективность свертывающихся диафрагменных уплотнений зависит от свойств используемых уплотнительных материалов, к которым предъявляются требования высокого сопротивления усталости, повышенного сопротивления ползучести и высокой химической стойкости при воздействии масла или водорода. Обнадеживающие результаты были получены при использовании полиуретановой резины. Стендовые испытания показали, что срок службы уплотнения в значительной степени зависит от температуры, перепада давления на уплотнении и отношения толщины диафрагмы к размеру зазора между поршнем и стенкой цилиндра. Установлено, что наиболее важным параметром является температура. При частоте вращения вала двигателя 1500 об/мин и температуре окружающей среды 25 С уплотнения работали больше года (10 ООО ч) однако при повышении температуры до 100 °С уплотнения выходили из строя через 150 ч. Это было связано с влиянием температуры на прочность материала диафрагмы. При температуре 100 С прочность материала диафрагмы составляла лишь 20 % прочности на растяжение при нормальных условиях работы.  [c.239]

Допускаемые напряжения изгиба зубьев шестерни [а]л и колеса с5]р2 определяют по общей зависимости (но с подстановкой соответствующих параметров для шестерни и колеса), учитывая влияние на сопротивление усталости при изгибе долговечности (ресурса), шероховатости поверхности выкружки (переходной поверхности между смежными зубьями) и реверса (двустороннего приложения) нагрузки  [c.14]

Особая роль сварных соединений в вопросах прочности конструкций при переменном нагружении привлекла пристальное внимание многих исследователей к свойствам материала соединения, а также к проблеме влияния остаточных сварочных напряжений (ОСН) на развитие трещин усталости [23, 235, 361]. Первоначально делались попытки методами механики разрушения получить интегральные сведения о сопротивлении  [c.196]

Напрессованные на вал детали. Влияние на сопротивление усталости напрессовки деталей существенно зависит от размера. Поэтому ее влияние и влияние размера нельзя учитывать независимыми коэффициентами и приходится учитывать общим коэффициентом (К /е)а (рис. 16.9)  [c.327]

Влияние формы кривой изменения напряжений на сопротивление усталости изучено недостаточно, но имеющиеся данные позволяют все же считать, что это влияние невелико, а решающую роль играют значения максимального и минимального напряжений цикла и их отношение. Поэтому в дальнейшем будем предполагать, что изменение напряжений во времени происходит по закону, близкому к синусоиде (рис. XII.3, а).  [c.308]

Различные способы поверхностного упрочнения (наклеп, цементация, азотирование, поверхностная закалка токами высокой частоты ИТ. п.) сильно повышают значения предела выносливости. Это учитывается введением коэффициента влияния поверхностного упрочнения /С . Путем поверхностного упрочнения деталей можно в 2—3 раза повысить сопротивление усталости деталей машин.  [c.318]


Влияние размеров детали. Размеры детали существенно влияют на предел выносливости детали. Для учета снижения сопротивления усталости при увеличении размеров вводится коэффициент влияния размеров сечения Ез. Это масштабный фактор, он представляет собой отношение предела выносливости детали размером й к пределу выносливости лабораторного образца размером й, .J  [c.155]

Влияние качества поверхности. Дефекты поверхности детали являются концентраторами напряжений и влияют на ее сопротивление усталости. Влияние качества поверхности оценивают коэффициентом 3, равным отношению предела выносливости образца, поверхность которого обработана так же, как поверхность детали, к пределу выносливости образца, обработанного шлифованием.  [c.155]

Влияние температуры. С увеличением температуры сопротивление усталости детали уменьшается. Например, для углеродистых сталей ориентировочно считают, что заметное снижение предела текучести а . наступает при температуре свыше 200°С. При температуре 300°С это снижение достигает 30. .. 40%, а затем предел текучести понижается примерно на 10% с повышением температуры на 100°С.  [c.155]

Для повышения сопротивления усталости широко применяются различные способы упрочнения поверхностей деталей, например, поверхностная закалка, химико-термическая обработка, обкатка роликами, дробеструйная обработка и др. Отношение предела выносливости упрочненных образцов к пределу выносливости неупрочненных образцов называется коэффициентом влияния поверхностного упрочнения и обозначается К . Обычно = 1,1... 2,8.  [c.283]

Уточненный проверочный расчет валов на усталость исходит из предположения, что нормальные напряжения изменяются по симметричному, а касательные — по асимметричному циклу. Этот расчет заключается в определении фактического коэффициента запаса прочности в предположительно опасных сечениях с учетом характера изменения напряжений, влияния абсолютных размеров деталей, концентрации напряжений, шероховатости и упрочнения поверхностей. Условие сопротивления усталости имеет вид  [c.217]

Таблица 3.53. Влияние температуры испытания на сопротивление малоцикловой усталости полосы с отверстием (Л , = 2,5) при асимметричном растяжении [3,20] Таблица 3.53. <a href="/info/222925">Влияние температуры</a> испытания на сопротивление <a href="/info/23958">малоцикловой усталости</a> полосы с отверстием (Л , = 2,5) при асимметричном растяжении [3,20]
Далее возникает вопрос о влиянии концентрации напряжений на прочность деталей в условиях циклически изменяющихся во времени напряжений. Здесь надо сказать, что наличие местных напряжений снижает прочность деталей как из хрупких, так и из пластичных материалов (правда, не одинаково). Это снижение прочности можно установить только экспериментально, испытывая на сопротивление усталости образцы с различными концентраторами напряжений. При этом надо подчеркнуть, что экспериментальные данные относятся к симметричным циклам. Можно схематически показать две кривые усталости — для гладких образцов и для образцов с каким-либо концентратором напряжений (рис. 15,3). Отношение ординат горизонтальных участков этих кривых даст величину эффективного коэффициента  [c.179]

Влияние химического состава материала. При испытании сталей с примесями углерода, магния, никеля, хрома, ванадия, меди, бора и фосфора замечено, что каждый из них повышает сопротивление усталости в такой же пропорции, в какой они повышают предел прочности материала.  [c.353]

Влияние состояния поверхности. В большинстве случаев поверхностные слои элемента конструкции, подверженного действию циклических нагрузок, оказываются более напряженными, чем внутренние (в частности, это имеет место при изгибе и кручении). Кроме того, поверхность детали почти всегда имеет дефекты, связанные с качеством механической обработки, а также с коррозией вследствие воздействия окружающей среды. Поэтому усталостные трещины, как правило, начинаются с поверхности, а плохое качество последней приводит к снижению сопротивления усталости.  [c.671]

Влияние тренировки. Если приложить к образцу напряжения немного ниже предела выносливости и затем постепенно повышать величину переменной нагрузки, то сопротивление усталости можно значительно повысить. Это явление, называемое тренировкой материала, широко используется в технике.  [c.673]

Современные расчеты на сопротивление усталости отражают характер изменения напряжений, характеристики сопротивления усталости материалов, концентрацию напряжений, влияние абсолютных размеров, шероховатости поверхности и поверхностного упрочнения. Расчет обычно производят в форме проверки коэффициента запаса прочности по усталости. Для расчс .та необходимо знать постоянные а , и Тт и переменные а<, и Та составляющие напряжений. Коэффициент запаса прочности определяют по уравнению  [c.324]

Влияние различных способов упрочнения позерхности стали на ее предел усталости и сопротивления коррозионной усталости в 3%-ном растворе Na l показаны в табл. 7.  [c.18]


Наклеп малой интенсивности и глубины (u 7% и /i — 15 мкм) у стали ЭИ961 на малой базе испытания при 300° С дает некоторое незначительное увеличение сопротивления усталости (до 7,5%), что связано с устойчивостью деформационного упрочнения малой интенсивности при данных условиях испытаний. С увеличением базы испытания это положительное влияние наклепа малой интенсивности и глубины на характеристики усталости исчезает. Сопротивление усталости на базе 10 циклов у стали ЭИ961 с тем же поверхностным наклепом снижается примерно на 6%.  [c.222]

Зависимость усталостной прочности от температуры. Как отмечалось (см. табл. 34), усталостная прочность титановых сплавов падает по мере повышения температуры испытания. Наибольшее снижение предела усталости наблюдается. у технически чистого титана, наименьшее — у теплопрочных а + р-спла-вов. Относительное изменение предела усталости в зависимости от температуры для этих сплавов (ВТ6, ВТ8, ВТЗ-1, ВТ16 и ВТ22) показано на рис. 71, из которого следует, что повышение температуры до 400—450° С снижает усталостную прочность на 20— 25%. Это снижение несколько меньше, чем снижение временного сопротивления под влиянием повышения температуры до 400— 450° С. Интересным является то, что предел усталости, определенный на надрезанных образцах, значительно меньше зависит от температуры испытания, чем предел усталости гладких образцов. Из этих данных видно также, что изменение усталостной прочности более значительно при отрицательных температурах, чем в диапазоне 20—450°С. Многие исследователи уровень циклической прочности титановых сплавов при повышенных температурах  [c.157]

Эксплуатация в течение более длителшого времени по сравнению с расчетной долговечносп ю Влияние термообработки на сопротивление ползучести Влияние конструкции и деформации, вызванной сваркой Разрушение, обусловленное термической усталостью Влияние конструкции и деформации, вызванной сваркой Чрезмерные деформации в деталях большого размера  [c.161]

Влияние времени на механические свойства металлов, ползучесть, релаксация, усталость, зависимость сопротивления от скорости и течение при больших скоростях и высоких давлениях в ней не рассматриваются они составляют два доугих самостоятельных раздела теории пластичности, впрочем, тесно связанных с первым.  [c.6]

Сопротивление усталости сварных соеди иеиий — Влияние конструктивных к технологических факторов 114 — 122  [c.636]

Интенсивно исследовались также особенности сопротивления усталости различных конструкционных сплавов, влияние технологических факторов и конструктивных форм. Эти работы выявили ряд закономерностей, связанных с большим влиянием на статическую выносливость местных концентраций напряжений и полей остаточных напряжений (Б. Ф. Богданов, Д. Я. Кулешов, Н. И. Марин, М. В. Серов). На основе этих исследований была отработана методика обеспечения ресурса на стадии проектирования, базирующаяся на проверке конструктивно-технологических решений путем испытания крупногабаритных элементов (панелей, стыков и др.) в процессе создания новых самолетов (Л. И. Балабух, Н. И. Марин, М. В. Серов, А. М. Черемухин).  [c.304]

Для конструкций, работающих в обласга малоцикловой усталости, представляет интерес оценить влияние среды на Пэрисовский участок диаграммы усталостного разрушения. Как показывают эксперименты, степень влияния среды на скорость роста трещины в данном случае существенно зависит от уровня К и сопротивления сплава коррозионному растрескиванию. При > KJJ значительно возрастает зависимость скорости роста трещины от частоты нагружения и формы цикла. Так, на рис. 13.3.3 видно, что для сплава ВТ20  [c.486]

Расчет на сопротикление усталости. Уточненные расчеты на сопротивление усталости отражают влияние разновидности цикла напряжений, статических и усталостных характеристик материалов, размеров, формы и состояния поверхности. Расчет выполняют в форме проверки коэффициента У запаса прочности, минимально допустимое значение которого принимают в диапазоне [/5] = 1,5—2,5 в зависимости от ответственности конструкции и последствий разрушения вала, точности определения нагрузок и напряжений, уровня технологии изготовления и контроля.  [c.169]

Существенный недостаток прессового соединения — зависимость его нагрузочной способности от ряда факторов, трудно поддающихся учету широкого рассеивания значений коэффициента трения и натяга, влияния рабочих температур на прочность соединения и т. д. К недостаткам соединения относится также наличие высоких сборочных напряжений в деталях и уменьшение их сопротивления усталости вследствие концентрации давлений у краев отверстия. Влияние этих недостатков снижается по мере накопления результатов экспериментальных и теоретических исследований, позболяюш,их совершенствовать расчет, технологию и конструкцию прессового  [c.91]

Практика эксплуатации сварных нетермообрабатываемых конструкций в условиях циклического нагружения показывает, что в большинстве случаев разрушения возникают в сварном шве или области сопряжения шва с основным металлом. Это связано с комплексом факторов, снижающих работоспособность сварных соединений, основными из которых являются концентрация напряжений и деформаций в зонах сопряжения шва с основным металлом, остаточные сварочные напряжения (ООН), а также ухудшение характеристик сопротивления усталости металла шва и зоны термического влияния по отношению к основному металлу [59, 119, 144].  [c.268]

Коэффициенты фз и < т, учитывающие влияние среднего напряжения цикла на сопротивление усталости, обычно принимают фа =(, 05, V-= о — для Ешзкоуглеродистых сталей фа =0,1, ф = = 0,05 —для среднеуглеродистых сталей фа =0,15, фа =0,1 — для легированных сталей.  [c.316]

Учебное пособие написано в рамках чтения лекций в МГТУ им. Н.Э. Баумана по курсу Конструкционная прочность машиностроительных материалов на факультете Машиностроительные технологии (кафедра Материаловедение ) и предназначено для студентов, обучающихся на материаловедов и машиностроителей. Среди механических свойств конструкционных металлических материалов усталостные характеристики занимают очень важное место. Известно, что долговечность и надежность машин во многом определяется их сопротивлением усталости, так как в подавляющем большинстве случаев для деталей машин основным видом нагружения являются динамические, повторные и знакопеременные на1 рузки, а основной вид разрушения - усталостный. В последние годы на стыке материаловедения, физики и механики разрушения сделаны большие успехи в области изучения физической природы и микромеханизмов зарождения усталостных трещин, а также закономерностей их распространения. Сложность оценки циклической прочности конструкционных материалов связана с тем, что на усталостное разрушение оказывают влияние различные факторы (структура, состояние поверхностного слоя, температура и среда испытания, частота нагружения, концентрация напряжений, асимметрия цикла, масштабный фактор и ряд других). Все это сильно затрудняет создание общей теории усталостного разрушения металлических материалов. Однако в общем случае процесс устаттости связан с постепенным накоплением и взаимодействием дефектов кри-сталтгической решетки (вакансий, междоузельных атомов, дислокаций и дискли-наций, двойников, 1 раниц блоков и зерен и т.п.) и, как следствие этого, с развитием усталостных повреждений в виде образования и распространения микро - и макроскопических трещин. Поэтому явлению усталостного разрушения присуща периодичность и стадийность процесса, характеризующаяся вполне определенными структурными и фазовыми изменениями. Такой анализ накопления струк-туршз1х повреждений позволяет отвлечься от перечисленных выше факторов. В учебном пособии кратко на современном уровне рассмотрены основные аспекты и характеристики усталостного разрушения металлических материалов.  [c.4]


Большое влияние на предел выносливости окалывает коррозия. На рис. 12.23 показано снижение коэффициента Кр ъ зависимости от временного сопротивления стали при различной выдержке в условиях коррозии до испытания на усталость.  [c.496]


Смотреть страницы где упоминается термин Усталость — Сопротивление — Влияние : [c.377]    [c.185]    [c.197]    [c.110]    [c.94]    [c.4]    [c.328]    [c.78]    [c.476]    [c.488]    [c.333]   
Справочник машиностроителя Том 3 Изд.3 (1963) -- [ c.0 ]



ПОИСК



ВЛИЯНИЕ КОНСТРУКТИВНЫХ, ТЕХНОЛОГИЧЕСКИХ И ЭКСПЛУАТАЦИОННЫХ ФАКТОРОВ Когаев В. ПБойцов Б. В. Новая система справочной информации для определения расчетных характеристик сопротивления усталости

Влияние дополнительного изгиба на сопротивление усталости растянутых болтовых соединений

Влияние конструктивных и технологических факторов на сопротивление усталости

Влияние конструктивных факторов на сопротивление усталости

Влияние конструктивных факторов на сопротивление усталости резьбовых соединений

Влияние концентрации напряжений на сопротивление коррозионной усталости

Влияние концентрации напряжений на сопротивление усталоСопротивление усталости в зависимости от состояния поверхности изделий и от их размеров

Влияние концентрации напряжений, размера и степени чистоты обработки поверхности детали на ее сопротивление усталости

Влияние коррозии на сопротивление усталости

Влияние на при сложном напряженном состоянии — Влияние на сопротивление усталости

Влияние основных конструктивных н технологических факторов на сопротивление усталости

Влияние состава, свойств и структуры материала на сопротивление термической усталости

Влияние технологических факторов на сопротивление термичеi ской усталости

Влияние технологических факторов на сопротивление термической усталости. Структурные признаки термоусталости

Концентрация напряжений 21, 143 Влияние на сопротивление усталост

Коррозия трения — Влияние па сопротивление усталости

Особенности влияния наклёпа и остаточных напряжений на сопротивление усталости деталей

Петухов А. Н. Прогнозирование характеристик сопротивления усталости конструкционных материалов с учетом влияния эксплуатационных повреждений фреттингом

Сопротивление Влияние трещин коррозионной усталости

Сопротивление в балках сложное усталости — Влияние упрочнения

Сопротивление в балках усталости — Влияние упрочнения

Сопротивление деформациям коррозионной усталости — Влияние

Сопротивление усталости

Сопротивление усталости основного металла — Влияние хромовых покрытий

Сопротивление усталости сварных соединений — Влияние конструктивных

Сопротивление усталости сварных соединений — Влияние конструктивных и размеры шва

Сопротивление усталости сварных соединений — Влияние конструктивных ные напряжения от сварки 116 — Состояние поверхности основного металла в зоне шва 115, 116 — Форма

Сопротивление усталости сварных соединений — Влияние конструктивных обработка шва 117 — Напряжения

Сопротивление усталости сварных соединений — Влияние конструктивных стыковом соединении ц5 — Остаточ

Сопротивление усталости сварных соединений — Влияние конструктивных технологических факторов

Сопротивление усталости — Влияние абсолютных размеров поперечного сечени

Сопротивление усталости — Влияние абсолютных размеров поперечного сечени механических свойств

Сопротивление усталости — Влияние качества обработки поверхности

Сопротивление усталости — Влияние поверхностного упрочнения

Сопротивление усталости — Влияние солютных размеров детали (масштабного фактора)

Усталость

Усталость сопротивление У., влияние высокой температурь

Усталость — Сопротивление — Влияние деталей машин — Примеры расчет

Усталость — Сопротивление — Влияние при симметричном цикле—РасчетФормулы

Усталость — Сопротивление — Влияние упрочнения поверхностного слоя



© 2025 Mash-xxl.info Реклама на сайте