Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление Влияние трещин коррозионной усталости

Сопротивление таких кривых, полученных при испытании металла на воздухе и в коррозионной среде (например, воде, паре), дает информацию по влиянию Коррозионной среды на предел выносливости. Однако не всегда такое сопротивление может быть успешно использовано для оценки стойкости металла к коррозионной усталости. Это объясняется тем, что для некоторых металлов определяющую роль в усталостном разрушении играет скорость распределения трещины, а не возникновение первоначального дефекта, из которого она начинает свой рост. Целесообразно в этой связи исследовать развитие усталостной трещины на образцах с предварительно нанесенным надрезом, а данные о влиянии коррозионной усталости представлять в виде зависимостей роста усталостной трещины от интенсивности напряжений.  [c.184]


Сопротивление усталости материалов в коррозионной среде может резко отличаться от сопротивления усталости на воздухе и в других малоактивных средах. Основными особенностями коррозионной усталости являются отсутствие физического предела усталости (рис. 4.36), отсутствие корреляции с прочностными характеристиками при статическом циклическом нагружении на воздухе (табл. 4.19), преимущественно межзеренное распространение трещин, сильное влияние частоты нагружения, уменьшение чувствительности к концентрации напряжений, вызванной надрезами разной формы, повышение усталостной прочности при увеличении размеров детали (образца).  [c.328]

Любопытно, что подобный порядок в значении сопротивления коррозионной усталости не совпадает с порядком значений коррозионных потерь для таких же, но ненапряженных образцов. По-видимому, в случае макроконтакта последний при наличии дополнительного фактора — напряжения сравнительно за короткое время обусловливал возникновение на поверхности образца коррозионного изъязвления, являющегося концентратором напряжения. Дно изъязвления под влиянием сильного анодного тока, возникающего как от макроконтакта, так и от концентрации напряжения, быстро заострялось и превращалось в трещину коррозионной усталости. Излом этих образцов от усталости при коррозии наступал всегда раньше, чем у образцов без контакта, и чаще находился на линии раздела медного слоя со сталью. Это и понятно, так как именно на границе двух металлов с неодинаковыми значениями электродных потенциалов в электролитах возникал максимальный ток коррозии. Иная картина наблюдалась у образцов с микроконтактами. Рассредоточенные катодные участки обусловливали одновременное возникновение большого числа микрокоррозионных изъязвлений. Последние способствовали равномерному рассредоточиванию приложенных механических напряжений по образцу. Это снижало разрушающее действие напряжения, и поэтому время, за которое развивалась трещина коррозионной усталости, увеличивалось. Не исключено также, что подобное распределение микрокатодов на поверхности образцов в условиях хорошей аэрации, возникающей от вращения образцов, может также приводить к их пассивированию и, следовательно, к некоторому торможению процесса коррозионной усталости.  [c.240]

V Сопротивленад стали коррозионной усталости зависит и от формы цикла (от закономерности, по которой изменяются напряжение и деформации при циклическом нагружении). Форма цикла определяется условиями эксплуатации деталей и конструкций и бывает различной синусоидальной, пилообразной, трапецеидальной и прямоугольной. Цикл нагружения может быть как симметричным, так и асимметричным. Форма цикла влияет на процессы упрочнения металла в зоне перед вершиной трещины (зона предразрушения), а также на процессы накопления искажений кристаллической решетки, отдыха и перераспределения там напряжений. Кроме того, форма цикла, определяя скорость деформирования, а также время пребывания материала в деформированном состоянии, влияет на электрохимические (коррозия и наводороживание) процессы в трещине. При малоцикловом нагружении в синтетической морской воде и других средах наименьшая долговечность наблюдается для синусоидальной формы цикла при переходе к трапецеидальной форме, а затем к прямоугольной долговечность металла несколько возрастает. Отмечено, что форма цикла сказывается на сопротивлении усталости также при многоцикловом усталостном нагружении, однако в условиях малоцикловой усталости это влияние проявляется сильнее [21,71,72].  [c.51]


Сопротивление коррозионной усталости зависит также от величины амплитуды циклического деформирования. Рост амплитуды ведет к увеличению интенсивности электрохимических (локальная коррозия й наводороживанйе) процессов в вершине трещины, снижая тем самым время до разрушения. Со снижением амплитуды уменьшается интенсивность электрохимических процессов, но с увеличением времени до разрушения повышается к время контакта со средой, т. е. увеличивается роль электрохимических процессов, протекающих во времени. По> тому влияние величины амплитуды деформирования на сопротивление сталей коррозионной усталости неоднозначно и определяется условиями испытаний. Известно, что с ростом агрессивности среды воздействие амплитуды циклического деформирования на долговечность материала снижается. При малоцикловой коррозионной усталости с увеличением амплитуды отрицательное воздействие среды ослабевает, и, начиная с некоторого (критического) значения амплитуды, среда практически уже 52  [c.52]

Газовое контактное хромирование при 1100°С в течение 2—20 ч не оказало существенного влияния на выносливость образцов из нормализованной среднеугперо-дистой стали. Предел выносливости хромированных и нехромированных образцов составлял 260-280 МПа. Сравнительно тонкие карбидные слои (до 0,010 мм) приводят к повышению предела выносливости образцов на 15—20 %. Рост трещины карбидного слоя вследствие увеличения выдержки, а также повышения температуры процесса снижает выносливость хромированной стали вплоть до выносливости нехромированной и даже ниже. Так, газовое контактное хромирование при 950°С обеспечивает возникновение сравнительно высоких остаточных напряжений сжатия (1200 МПа), повышает предел выносливости на 15—20 % (табл. 22), однако не приводит к повышению сопротивления коррозионной усталости стали 45 в 3 %-ном растворе Na I из-за точечной несплошности диффузионного слоя. Увеличение вы- держки при насыщении до 10 ч, несмотря на некоторое снижение остаточных сжимающих напряжений, привело к увеличению условного предела коррозионной выносливости с 50 до 100 МПа, что связано с удовлетворительной сплошностью карбидного слон, его высокими антикоррозионными свойствами.  [c.175]

Было показано, что сопротивление усталости образцов в воздухе при чистом изгибе выше, чем при растяжении — сжатии. Предел выносливости при изгибе составил а =495 МПа, в то время как при растяжении — сжатии о 1р (. =410 МПа. При воздействии 3 %-ного раствора Na I эта закономерность изменяется в противоположном направлении. Условный предел выносливости при изгибе и растяжении — сжатии соответственно составил 200 и 340 МПа. Такой характер влияния вида нагружения на сопротивление коррозионно-усталостному разрушению связан с тем, что среда сильно разупрочняет приповерхностный слой металла образца, который несет основную нагрузку при циклическом изгибе. При циклическом же растяжений — сжатии значение напряжений по сечению образца выравнивается и роль приповерхностного слоя значительно меньше. На основании обобщения имеющихся данных можно сделать заключение, что основными напряжениями, способствующими зарождению и особенно развитию коррозионно-усталостных трещин, являются Нормальные напряжения.  [c.115]

Необходимо также помнить и о влиянии поверхностного слоя. В большинстве случаев термическая усталость приводит к образованию трещин, начинающихся в поверхностном слое материала. Большое значение здесь имеет как шероховатость самой поверхности. Так и технологический процесс, формирующий окончательный вид детали. При коррозионном воздействии среды надйе. надрезов, оставшихся после механической обработки, образуются зародыши трещин. Исследования, касающиеся создания благоприятного состояния внутренних напряжений в поверхностном слое, например, с помощью обкатки, не подтвердили их положительного влияния из-за процессов возврата и рекристаллизации структуры. Более целесообразным кажется применение термомеханической обработки, которая существенно изменяет прочностные показатели. Повышение сопротивления термической усталости было достигнуто путем введения в поверхностный слой хрома с помощью диффузионного хромирования [111, 121] или нитроцианирования [121]. Продолжаются,, работы по внедрению других легирующих элементов в поверхностный слой, например бора.  [c.88]


Вторым существенным фактором положительного влияния остаточных напряжения сжатия на сопротивление усталости является то, что они не дают возможность раскрытия поверхностных дефектов в виде макро- и микротре-нщн, блокируют отрицательное действие концентраторов напряжений путем перераспределения напряжений у дна надреза. При этом увеличивается инкубационный период до зарождения трещины и скорость ее последующего распространения. Иногда остаточные напряжения сжатия приводят к закрытию и залечиванию микротрещин в результате диффузионной сварки их краев. Остаточные же напряжения растяжения, наоборот, способствуют раскрытию макро- и микродефектов, проникновению в поверхностные трещины внешней среды, ускоряя коррозионные процессы, увеличивая напряжения растяжения в вершине трещины за счет расклинивающего действия продуктов коррозии и уменьшая в конечном итоге коррозионно-усталостную прочность и стойкость к коррозионному растрескиванию.  [c.93]

Для конструкций, работающих в обласга малоцикловой усталости, представляет интерес оценить влияние среды на Пэрисовский участок диаграммы усталостного разрушения. Как показывают эксперименты, степень влияния среды на скорость роста трещины в данном случае существенно зависит от уровня К и сопротивления сплава коррозионному растрескиванию. При > KJJ значительно возрастает зависимость скорости роста трещины от частоты нагружения и формы цикла. Так, на рис. 13.3.3 видно, что для сплава ВТ20  [c.486]


Смотреть страницы где упоминается термин Сопротивление Влияние трещин коррозионной усталости : [c.86]   
Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.161 ]



ПОИСК



Влияние трещин

Коррозионная усталость

Коррозионные трещины

Сопротивление усталости

Трещина усталости

Трещины коррозионной усталости

Усталость

Усталость — Сопротивление — Влияние



© 2025 Mash-xxl.info Реклама на сайте