Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Детали — Размеры — Влияние на прочность при переменных

При конструировании очень часто бывает необходимо знать величину предела выносливости (усталости), т. е. величину того максимального напряжения, которое может выдержать, не разрушаясь, металл, повергнутый бесконечно большому числу перемен нагрузки. В таких случаях условно определяют предел выносливости как максимальное напряжение, которое выдерживает стальной образец, при числе перемен нагрузки К), и образцы из цветных металлов при числе перемен нагрузки, равном Ю . Полученные таким образом количественные характеристики усталостной прочности в большинстве случаев пригодны при конструировании. Однако без оценки усталостной прочности деталей пределы выносливости приходится рассматривать в связи с влиянием концентрации напряжений и абсолютных размеров на прочность при действии переменных напряжений.  [c.78]


Во второй части книги были приведены сведения о расчетах на прочность при статическом действии нагрузки и краткие данные об определении напряжений при ударе. Для большинства деталей машин характерно, что возникающие в них напряжения периодически изменяются во времени в связи с этим возникает вопрос о расчете на прочность и установлении величин допускаемых напряжений при указанном характере нагружения. При действии переменных напряжений значительно существеннее, чем при постоянных напряжениях, сказывается влияние формы детали, ее абсолютных размеров, состояния и качества поверхности. Особое значение имеет форма детали и связанное с ней явление концентрации напряжений. Кратко ознакомимся с этим явлением, а затем рассмотрим вопрос о выборе допускаемых напряжений раздельно для статического и переменного во времени нагружения.  [c.328]

Статистическая оценка действующих в детали номинальных переменных напряжений и напряжений, характеризующих ее несущую способность (с учетом влияния концентрации, неравномерности распределения напряжений и размеров сечений) позволяет определить запас прочности в зависимости от вероятности разрушения для совокупности одинаковых деталей парка однотипных изделий. Для стационарно нагруженных изделий условие разрушения отдельных из них определяется вероятностью превышения амплитуды переменных напряжений ffa над пределом выносливости (ст-1)д, имея в виду их статистическое распределение, независимое друг от друга. Разность этих величин, если они описываются нормальным распределением  [c.168]

ВЛИЯНИЯ размеров деталей на прочность их при переменных напряжениях, а дают лишь приближенную оценку этого влияния.  [c.393]

Влияние технологии изготовления на эксплуатационные показатели изделий проявляется также через получаемую при данном технологическом процессе точность размеров, форму и расположение поверхностей деталей. Характер этого влияния зависит от условий, в которых работают детали. Например, при зазорах по среднему, наружному и внутреннему диаметрам метрической резьбы прочность резьбовых соединений при переменных нагрузках повышают на 10—50% (рис. 10, а), а при статических нагрузках — снижают на 3—17% (рис. 10, б). Объясняется это тем, что зазоры и неизбежное при отрицательных отклонениях среднего диаметра уменьшение толщины витков резьбы образуют более благоприятное напряженное состояние и повышают равномерность распределения нагрузки по виткам резьбы [7].  [c.369]


Для оценки действительного понижения усталостной прочности в зависимости от концентрации напряжений при переменных нагрузках вводится эффективный (практический) коэффициент концентрации, представляющий собой отношение предельных номинальных напряжений, вызывающих разрушение деталей, не имеющих и имеющих концентраторы напряжений. Эффективный коэффициент концентрации напряжений меньше теоретического (расчетного) коэффициента и только для высокопрочных материалов с малой пластичностью эффективный коэффициент концентрации почти равен теоретическому. Чем выше прочность стали и хуже пластические свойства, тем сильнее влияние надрезов, причем с увеличением размера образца влияние надреза увеличивается. Чем менее пластичен материал, тем выше эффективный коэффициент концентрации напряжений и наоборот. Пластичные материалы обладают способностью сглаживать неблагоприятные для усталостной прочности пики напряжений концентратора.  [c.410]

Основные критерии работоспособности осей и валов — прочность и жесткость. Прочность осей и валов определяют размером и характером напряжений, возникающих под влиянием сил, действующих со стороны установленных на них деталей машин. Переменные по размеру или направлению силы, действующие на оси и валы, вызывают переменные напряжения. Постоянные по размеру и направлению силы вызывают в неподвижных осях постоянные напряжения, а во вращающихся осях и валах — переменные напряжения. Вращающиеся вместе с осями и валами нагрузки (например, центробежные силы) вызывают постоянные напряжения.  [c.272]

Данные о прочности материалов при действии переменных напряжений чаще всего получают в результате испытаний стандартных образцов малого диаметра. Поэтому оценка прочности деталей машин требует учета влияния на выносливость следующих основных факторов формы и абсолютных размеров детали состояния поверхности и свойств поверхностного слоя изменения режимов нагружения.  [c.24]

При оценке прочности деталей, работающих в условиях статического нагружения, свойства материала детали отождествлялись со свойствами материала образца, при этом не учитывалась разница ни в форме, ни в размерах детали и образца, на котором были получены предельные напряжения, т. е. предполагалось, что при равных номинальных напряжениях опасность разрушения образца и детали, выполненной из такого же материала, как и образец, одинакова. Многочисленные эксперименты показали, что при переменных напряжениях в расчетах на сопротивление усталости необходимо учитывать ряд факторов, которые существенным образом влияют на сопротивление усталости детали в то время, как на статическую прочность они оказывают незначительное влияние. К наиболее существенным факторам относятся концентрация напряжений, абсолютные размеры поперечных сечений детали, состояние поверхности — ее шероховатость, наличие коррозии, окалины и др. Рассмотрим более подробно влияние этих факторов на сопротивление усталости.  [c.293]

Расчет на усталость в больщинстве случаев выполняют как проверочный. Как и при расчете на статическую прочность цель проверочного расчета заключается в определении коэффициента запаса прочности в опасной точке рассчитываемой детали и сравнении его с нормативным. Прочность детали считается обеспеченной, если ее коэффициент запаса прочности не меньше требуемого (нормативного). При вычисления коэффициента запаса прочности деталей, находящихся под воздействием статических нагрузок, механические свойства материала детали отождествлялись с механическими свойствами материала образца, т. е. считалось, что поведение материала образца и материала детали будет одинаковым, если в них возникнут равные номинальные напряжения независимо от различия в форме и размеров образца и детали. Поскольку, как ранее было выяснено, при переменных напряжениях на предел выносливости материала существенное влияние оказывают и форма, и размеры поперечных сечений образцов, и шероховатость их поверхности, то, естественно, рассчитывая на сопротивление усталости конкретные, реальные детали, размеры и форма которых отличаются от стандартных образцов, необходимо учесть все факторы, снижающие сопротивление усталости.  [c.298]


Из рассмотренных выше теоретических положений следует, что величина резерва смазки в подшипнике является функцией многих переменных и зависит от физико-химических свойств смазки, конструктивных особенностей узла трения и условий его эксплуатации. Физико-химические свойства смазочного материала оказывают влияние на резерв смазки в подшипниках как при смазывании маслами, так и пластичными смазками. Для масел определяющее значение имеют их поверхностные свойства (поверхностное натяжение, краевой угол смачивания, работа адгезии), для пластичных смазок-объемно-механические свойства (вязкость, предел прочности на сдвиг). Важное значение из условий работы узла трения имеют частота вращения подшипника, температура, интенсивность вибрации его деталей и характер окружающей среды. Из конструктивных факторов можно указать на диаметр подшипника, ширину колец, форму и размеры желоба на них, тип сепаратора, наличие и качество уплотнений, расположение вала (вертикальное или горизонтальное) и многие другие.  [c.26]

Величина масштабного фактора зависит также от конфигурации детали, технологии ее изготовления и т. д. Поэтому приведенные на фиг. 112 кривые масштабного фактора не характеризуют полностью влияния размеров деталей на прочность их при переменных напряжениях, а дают лишь приближенную оценку этого влияния.  [c.195]

При расчетах деталей на прочность при переменных нагрузках за основу принимают предел выносливости гладкого образца, а в расчетные формулы для вычисления запасов прочности или допускаемых напряжений вводят поправки на влияние концентрации напряжений, среды, абсолютных размеров, состоянии поверхности, чувствительности к перегрузкам. Это влияние учитывают соответствующими коэффициентами, значение кото-  [c.70]

Советские исследователи-прочностники показали, что закономерности усталостных разрушений металлов лежат в основе расчета деталей машин под действием переменных напряжений, а также обоснования конструктивных и технологических способов увеличения их прочности. В связи с этим важную роль играют прежде всего концентрация напряжений и абсолютные размеры, как факторы прочности деталей. Анализ значительного экспериментального материала показал существование, с одной стороны, влияния абсолютных размеров на сопротивление усталости как проявление структурной неоднородности материала и влияние дефектов его строения и, с другой, эффект неоднородности напряженного состояния (Г. В, Ужик и др.). На утомляемость деталей наряду с концентрацией напряжени и абсолютных размеров оказывают большое значение качество поверхности, свойство поверхностного слоя и влияние среды (сопротивление усталостному разрушению в коррозионных средах, кавитационные разрушения).  [c.43]

Снижения рабочих напряжений н повышения прочности деталей или узлов можно достичь изменением параметров цикла напряжений или созданием предварительных напряжений. В ряде случаев можно упрочнить детали без йзменения размеров за счет создания предварительных напряжений сжатия и уменьшения более опасных напряжений растяжения. Влияние усилия предварительной затяжки на величину переменной составляющей и упрочнение резьбовых соединений рассмотрено в гл. VI.  [c.272]

Влияние дробеструйной обработки особенно велико по отношению к неполированным деталям (табл. 44). Вызываемое ею повышение усталостной прочности больше для деталей, работающих при переменном изгибе или кручении, чем при растян ении — сжатии. Оно особенно значительно для деталей малых размеров (табл. 45).  [c.201]

Поверхностная чувствительность к переменным напряжениям тем больше, чем выше прочность и твердость сталей и чем больше размеры деталей. Точеные образцы малых диаметров имеют предел выносливости на 6—8% ниже, чем полированые. Для больших диаметров снижение предела усталости под влиянием обточки достигает 16% по сравнению с полировкой.  [c.204]

Из большого числа вариантов термомеханической обработки наиболее перспективна высокотемпературная термомеханическая обработка (ВТМО) как по технологическим возмол<ностям, так и по влиянию на комплекс прочностных характеристик. Одиако использование тер-момеханическн упрочненного проката возможно в редких случаях, когда для изготовления деталей не требуется применения значительной обработки резанием. С другой стороны, ВТМО может быть использована для повышения эксплуатационной долговечности деталей в результате улучшения прочностных свойств конструкционных сталей с одновременным решением задачи формоизменения заготовок до нужных размеров. Возможность добиться таким образом снижения расхода металла, увеличения рабочих нагрузок в машинах, а кроме того, и упрочнения деталей с переменным по сечению химическим составом (например, с покрытиями или подвергнутых химико-термической обработке поверхности) делают актуальной задачу осуществления ВТМО на заготовках или деталях машин. Однако для использования упрочняющего эффекта ВТМО с целью повышения эксплуатационных характеристик деталей машин необходимо решить комплекс технологических задач, касающихся вопросов взаимосвязи ВТМО с технологией формообразования качественных, высоконадежных деталей. К числу таких задач относится разработка вопросов направленности упрочнения при ВТМО, являющихся составной частью обшей теории высокопрочного состояния сталей. Отсутствие теоретических предпосылок образования оптимальной анизотропии свойств деталей при ВТМО не позволяет прогнозировать и получать необходимый уровень прочности в зонах наибольшей нагруженности деталей, а также формулировать принципы проектирования технологического оборудования, обеспечивающего необходимые для термомеханического объемно-поверхностного упрочнения схемы деформации.  [c.4]


При расчетах деталей на прочность при переменных нагрузках за основу принимается предел выносливости гладкого образца, а в формулы для вычисления запасов прочности или допускаемых напряжений вводятся поправки на влияние кониен-трации напряжений, среды, абсолютных размеров, состояния поверхности, чувствительности к перегрузкам. Это влияние учитывается соответствующими коэффч-циентами, значение которых определяют по графикам, построенным на основе экспериментальных данных [)6]. При несимметричных циклах указанные коэффициенты чаще относят только к амплитуде напряжений. полагая, что эффективные коэффициенты концентрации напряжений не зависят от несимметрии цикла.  [c.50]


Смотреть страницы где упоминается термин Детали — Размеры — Влияние на прочность при переменных : [c.365]    [c.17]   
Справочник металлиста Том 1 Изд.2 (1965) -- [ c.0 ]



ПОИСК



Детали — Размеры — Влияние

Прочность Влияние размеров детал

Прочность Влияние размеров детали

Прочность детали

Размер детали



© 2025 Mash-xxl.info Реклама на сайте