Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства усилителя

Косвенный метод измерения, преимущественно принятый в технике, реализуется при помощи преобразователей, статическая характеристика которых Y (X) обладает свойством усилителя  [c.100]

Каскадное включение ламп характеризуется относительно низким уровнем шумов, удачно согласует параметры фильтра с малым сопротивлением датчика и при управлении по нижней сетке позволяет получить высокий коэффициент усиления. Применение третьего каскада на лампе Лз улучшает избирательные свойства усилителя. Первая половина лампы Лз является катодным повторителем, а вторая — работает в усилительно.м режиме. Выходной каскад усилителя (лампа Л ) является катодным повторителем и выполняет функции согласования, как со стороны поступающего на него сигнала, так и со стороны нагрузки. Кроме того, применение катодного повторителя, обладающего малыми нелинейными искажениями, хорошими частотными свойствами и небольшой зависимостью выходного напряжения от изменения сопротивления нагрузки, способствует устойчивой работе усилителя.  [c.108]


В линейном режиме усиления для увеличения интенсивности волны используется малая доля энергии, запасённой в активной среде. Проблема линейного усиления обычно возникает при передаче и приёме сигнала, несущего информацию. В этом случае решающим фактором являются шумовые свойства усилителя, характеризующие его шумовой температурой Г, . Принципиально неустранимым источником шумов являются квантовые флуктуации. Обусловленная ими шумовая темн-ра, отнесённая к входу усилителя, даётся ф-лой  [c.549]

Так как одной из отличительных особенностей приборов квантовой электроники является высокая монохроматичность излучения, то уместно отметить, что квантовые усилители обладают способностью сужать спектральную ширину линии и усиливать монохроматичность падающего излучения. Это свойство усилителей связано с тем, что профиль коэффициента усиления имеет максимум на резонансной частоте и поэтому центральная часть линии усиливается сильнее, чем ее крылья.  [c.37]

Полагая, что усилитель в тракте управления (У2) и исполнительное устройство линейны, будем считать изменение продольной подачи пропорциональным величине рассогласования коэффициенты У2 и ку у, определяющие передаточные свойства усилителя У2 и исполнительного устройства, по сути, определяют и преобразовательные свойства тракта управления. Так как приращение подачи  [c.427]

К наиболее важным свойствам усилителя рулевого управления относятся степень его чувствительности и необратимости.  [c.239]

Под необратимостью понимают свойство усилителя воспринимать и поглощать толчки и удары от взаимодействия управляемых колес с дорогой, не передавая их на рулевое колесо..  [c.239]

На фиг. 125 приведены элементы золотника и гильзы, влияющие на вышеуказанные свойства усилителя. К этим элементам относятся ширина пояска золотника А, размеры В и форма фасок пояска золотника, ширина прорезей гильзы Е, расстояние между кромками прорезей С и величина перекрытия прорезей гильзы пояском золотника, обусловливаемая размером О.  [c.240]

Следует отметить, что от способа связи каскадов зависят многие важнейшие свойства усилителей, в первую очередь качество воспроизведения сигналов. Поэтому выбор способа связи является одним из первостепенных вопросов при разработке усилителя.  [c.146]

Динамические свойства усилителя определяются по его воздействию на огибающую модулированного сигнала. Если усилитель представить для огибающих входного и выходного сигналов в виде апериодического звена (4.101), то его постоянная  [c.97]

Ф и г. 120. Акустический низкочастотный и полосовой фильтр, обладающий свойствами усилителя, зависящими от скорости потока воздуха (по Майеру,  [c.421]


Рассмотрим свойства усилителя с отрицательной обратной связью. Предположим, что коэффициент усиления усилителя К = 20 (см. рис. 100).  [c.144]

Ультразвуковые импульсные приемные системы. Усиление высокочастотных сигналов импульсного типа требует применения усилителя с широкой полосой пропускания для обеспечения четкого воспроизведения импульсов и достаточной разрешающей способности. Под разрешающей способностью в этом случае понимается способность системы различать сигналы, следующие близко друг за другом. Это свойство усилителя определяется полосой пропускания, так как импульсы обладают очень широким спектром частот (см. гл. П).  [c.184]

Дело в том, что даже при однократном прохождении сигнала через реальную систему с задержкой последняя вносит из-за неизбежной дисперсии (т. е. зависимости времени запаздывания гармонических компонент сигнала от частоты) некие (пусть даже небольшие) искажения формы сигнала, которые вследствие многократного прохождения через усилитель и линию задержки приводят к установившемуся процессу, сильно отличающемуся по форме от исходного. Форма установившегося процесса будет при этом определяться конкретными свойствами реальных линий задержки и усилителей.  [c.232]

Для воспроизведения силы /(/) достаточно усилителей 8— 0. Приведенная схема отличается тем, что включает воспроизведение гармонической возмущающей силы и может быть использована для исследования влияния нелинейности возмущающей силы на динамические свойства гасителя.  [c.44]

Полупроводники занимают по удельной проводимости промел уточное место мевду проводниками и диэлектриками. Особенности свойств полупроводников позволяют широко использовать их в различных отраслях электротехники в технике связи в широком диапазоне частот, в различных устройствах радиоэлектроники и в технике сильного тока. Их применяют в выпрямителях, в усилителях, в фотодатчиках, в качестве специальных источников тока и т. п.  [c.4]

Существует несколько модификаций линейного шагового ЭГП. Движение от шагового электродвигателя может передаваться либо непосредственно на винт, либо на втулку. Недостатком пер вого варианта является то, что при больших ходах масса винта, длина которого равна величине хода, оказывается значительной, а это ухудшает динамические качества привода. Уменьшить массу винта за счет уменьшения его диаметра не всегда можно ввиду трудностей обработки. Таким образом, второй вариант с точки зрения получения лучших динамических свойств более предпочтителен, так как имеет значительно меньшую массу подвижных элементов первого каскада усилителя.  [c.162]

Сформированный таким образом сигнал проходит через блок 6, осуществляющий дополнительную энергетическую коррекцию уровня результирующего сигнала, который усиливается усилителем 7 мощности и поступает на вибростенд 8. Датчики 10 устанавливают на объект 9 в трех взаимно перпендикулярных плоскостях для исследования как продольных, так и поперечных крутильных колебаний элементов объекта. В датчиках 10 механические колебания преобразуются в электрические и через согласующие усилители поступают в анализатор 12. С помощью анализатора 12 выявляются гармонические составляющие, появляющиеся в элементах объекта, и исследуются резонансные свойства объекта. Результирующие АЧХ объекта по трем коор-  [c.327]

Применение электрогидравлического дроссельного усилителя для управления симметричным низкочастотным рекуперативным возбудителем позволяет использовать его во всех автоматически управляемых системах, приспособленных для самых разнообразных режимов нагружения (в пределах частотного порога). Замкнутость объема последнего каскада — обратимого гидроагрегата, его рекуперативные свойства исключают недостатки пря-  [c.230]

Составляющая обратной связи, пропорциональная трансформируемому напряжению, определяет величину отрицательной обратной связи по напряжению, охватывающей усилитель мощности и возбудитель колебаний, и обусловливает свойства, характерные для такой связи уменьшение выходного сопротивления Ri усилителя мощности и снижение нелинейных искажений, Уменьшение Rt способствует увеличению степени демпфирования подвижной системы ЭДВ, так как ЭДС движения, наводимая в обмотке подвижной катушки, оказывается замкнутой на меньшее внутреннее сопротивление усилителя,  [c.273]


Высоконикелевый пермаллой обладает низким значением р и поэтому используется только для магнитных экранов, сердечников реле, магнитопроводов и других устройств, работающих в постоянных магнитных полях. Высоконикелевый пермаллой легируют хромом, молибденом, медью, кремнием и марганцем для повышения значений Рнач, Ртах И р. Молибден уменьшает чувствительность пермаллоя к деформациям, а медь вызывает постоянство р в узких интервалах напряженности поля. Высоконикелевый легированный пермаллой применяют в магнитных усилителях, слаботочных трансформаторах, катушках индуктивности, трансформаторах тока и других устройствах при частоте 50 Гц (из лент толстого проката), звуковой и ультразвуковой частоте (из лент тонкого проката) и высокой частоте вплоть до радиочастот (из лент микронного проката). При этом необходимо учитывать, что магнитные свойства пермаллоя падают по мере уменьшения толщины ленты.  [c.157]

Специфика работы магнитного усилителя в качестве ШИМ. импульсного стабилизатора (особенно компенсационно-параметрического) выдвигает ряд дополнительных требований к точности анализа магнитного усилителя. В данном качестве зависимость у от напряжения питания и частоты становится столь же важной, как зависимость у от сигнала управления. При рассмотрении этих зависимостей некоторые из допущений, принимаемых при выводе соотношений, характеризующих усилительные свойства магнитного усилителя, приводят к результатам, существенно отличающимся от результатов эксперимента.  [c.336]

Полученное расхождение объясняется тем, что в диапазоне частот, которые используются для магнитных усилителей, влияние вихревых токов незначительно, и динамика перемагничивания определяется в основном внутренними свойствами материала (магнитной вязкостью).  [c.339]

ПОСТОЯННОГО тока, будет тогда показывать ток, пропорциональный мощности котла. Из пояснений к фиг. 68 ясно, что полезным свойством усилителя была бы возможность расширения шкалы вблйзи устойчивого уровня мощности. Это может быть осуществлено прибавлением второго чувствительного прибора, используемого в качестве нулевого при данной мощности. Такое устройство  [c.229]

Величина Рмин является хорошей мерой шумовых свойств усилителя при промежуточных значениях gs, Япо — хорошей мерой для больших величин я , и gno — хорошей мерой для малых значений проводимости gs. Это различие оказывается важным, когда проводимость источника должна удовлетворять некоторым ограничениям.  [c.46]

Для улучшения свойств усилителя оконечный и предоконеч-пый каскады охвачены отрицательной обратной связью по напряжению. В первом каскаде введена обратная связь для коррекции частотной характеристики.  [c.189]

Собственные помехи имеют флуктуирующий характер. К ним относят тепловой шум резисторов и шум, вызванный дробовым эффектом ламп и транзисторов. Спектр этой помехи непрерывный и простирается до нескольких гигагерц. Распределение гауссовское. В полосе канала ТЧ их уровень составляет примерно —139 дБ (1,2-10 2 Вт). Собственные помехи не зависят от характера передаваемых сигналов и определяются параметрами используемых усилителей, в первую очередь групповых. Поскольку число последовательно включенных усилителей в современных системах связи, как уже отмечалось, может достигать нескольких тысяч, а шумы в АСП при передаче сигналов накапливаются, требования к шумовым характеристикам линейных (т. е. усиливающих сигнал в линии) усилителей оказываются очень высокими. Количественно шумовые свойства усилителя оценивают коэффициентом шума, показывающим, на сколько увеличивается уровень собственных помех за счет усилителя. Коэффициент шума современных транзисторных усилителей МСП 3...6 дБ.  [c.294]

Для непосредственного измерения i можно ввести в день фотоэлемента какой-нибудь прибор, измеряюш,ий силу тока. Обычно в качестве такого прибора используют второй гальванометр. При удачной конструкции усилителя, обеспечении хороших контактов, сведении к минимуму вибраций и т. д. удается, используя два простых кембриджских гальванометра с внутренним сопротивлением 500 ом, работать с сопротивлением/ = 20 ом, а при благоприятных условиях с еще меньшим сопротивлением. При этом достигается увеличение чувствительности по напряжению примерно в 25 раз по сравнению с собственной чувствительностью гальванометра этого типа. Иными словами, если гальванометр без усилителя имеет чувствительность примерно 2 мм мкв при расстоянии от зеркала до шкалы 1 м, то при использовании описаиной схемы с двумя такими же гальванометрами чувствительность достигает 5 см1мкв. Действие сильной отрицательной обратной связи выражается в том, что свойства системы становятся почти не зависящими от параметров гальванометра и фотоэлементов. Это избавляет нас от необходимости заботиться о линейности первичного гальванометра и фототока [см. (10.1)].  [c.177]

Современные гироскопические приборы и системы представляют собой сложные электромеханические устройства, в конструкциях которых используются высокооборотные синхронные и асинхронные двигатели, безмомент-ные индуктивные чувствительные элементы, электронные, транзисторные и магнитные преобразователи и усилители, прецизионные сельсинные и потенциометрические дистанционные передачи, редукторные и безредукторные сервоприводы, электромагнитные моментные датчики, прецизионные специальные шариковые подшипники и другие виды прецизионных подвесов (поплавковые, воздушные, электростатические, электромагнитные и др.) и т. д Приборы и системы, действие которых основано использовании свойств гироскопа, называются гироскопическими.  [c.6]

Описанная выше работа при некотором ее дополнении позволяет оценить влияние нелинейности возмущающей силы на динамические свойства гасителя. В этом случае для каждого значения коэффициента Ад, т. е. для каждой частоты возмущающей силы, решение на модели следует проводить дважды. Первое решение описано выше. Второе решение получается при использовании гармонического возбуждения, Для этого необходимо к потенциометру, на котором настраивается коэффициент А4, подсоединить вместо выхода усилителя /О (см. риа. И. 4.4) выход усилителя 9, предварительно потенциометром задания начальных условий установив на выходе этого усилителя напряжение, соответствующее начальным условиям, отображающим амплитуду возмущающей силы, равную значению fo по-лигармонической возмущающей силы х (0) = 40 В.  [c.42]


Вакуумная электроника, основанная на использовании движения свободных электронов и ионов в вакууме или разреженных и сжатых газах, дала возможность создать вакуумные генераторы и усилители элег<тромагнитных колебаний в широчайшем спектре частот., Имеются приборы, основанные на вакууме, которые преобразуют тепловую, световую и механическую энергию в электрическую. Функции, выполняемые электровакуумными приборами во всех отраслях радиоэлектроники, весьма обширны и разнообразны. Этому способствовало изучение электрических свойств воздуха и вакуума, разработка и применение новых газов и паров штетических жидкостей, обладаюихих высокой электрической прочностью, малыми значениями диэлектрической проницаемости и потерь, а также применение новых видов пластмасс и керамики, особенно пористых.  [c.3]

Квантовая электроника использует новейшие достижения физики в исследовании квантовых процессов, происходящих внутри атомов и молекул вещества, при которых излучается электромагнитная энергия сверхвысокочастотных колебаний, с длиной волны около одного микрона, т. е. в области инфракрасных колебаний. Создаваемые при этом параллельные световые лучи огромной яркости позволяют сконцентрировать колоссальную энергию в малом объеме. Генераторы и усилители этого типа (лазеры и мазеры) могут быть отличным средством для космической связи и для оптических локаторов. Эти генераторы дают возможность использовать энергию высокой плотности и осуществлять новые впды химических реакций, сварки и плавления тугоплавких веществ и другие высокотемпературные процессы. Разработка новых материалов, обладающих квантово-оптическими свойствами, — одно из основных условий успеха в этой области.  [c.4]

Приборы для контроля физико-механических свойств материала деталей, действие которых основано на измерении магнитной проницаемости, пока не нашли широкого применения в промышленности, хотя в ряде случаев они более удобны, чем коэрцити-метры, проще в автоматизации и иногда дают более четкие корреляционные зависимости между магнитными и другими физическими характеристиками, В измерительной технике применяют два основных способа измерения магнитной проницаемости логометрический и индукционный. Первый из них основан на принципе действия логометров, измеряющих отношение значений двух параметров, например индукции и напряженности намагничивающего поля. В данном случае необходимо, чтобы ток в одной обмотке логометра был пропорционален индукции, во второй — напряженности намагничивающего поля. Ло-гометр включается по схеме вольтметра-амперметра и, если необходимо, через усилители мощности.  [c.75]

Магнитные свойства материалов обусловлены внутренними скрытыми формами движения электрических зарядов, представляющими собой элементарные круговые токи. Такими круговыми токами являются вращение электронов вокруг собственных осей — электронные спины и орбитальное вращение электронов в атомах. Явление ферромагнетизма связано с образованием внутри некоторых материалов ниже определенной температуры (точки Кюри) таких кристаллических структур, при которых в пределах макроскопических областей, называемых магнитными доменами, электронные спины оказываются ориентированными параллельно друг другу и одинаково направленными. Таким образом, характерным для ферромагнитного состояния вещества является наличие в нем самопроизвольной (спонтанной) на.магниченности без приложения внешнего магнитного поля. Однако, хотя в ферромагнетике и образуются самопроизвольно намагниченные области, но направления магнитных моментов отдельных доменов получаются самыми различными, как это вытекает из закона о минимуме свободной энергии системы. Магнитный поток такого тела во внешнем пространстве будет равен нулю. Возможные размеры доменов для некоторых материалов составляют около 0,001—10 мм при толщине пограничных слоев между ними в несколько десятков — сотен атомных расстояний. У особо чистых материалов размеры доменов могут быть и больше. Существование доменов удалось показать экспериментально. При очень медленном перемагничивании ферромагнитного образца в телефоне, соединенном через усилитель с катушкой, охватывающей образец, можно различать отдельные щелчки, связанные непосредственно со скачкообразными изменениями индукции. На полированной поверхности намагничиваемого образца ферромагнетика можно обнаружить появление тип1 чных узоров, образующихся с помощью осаждения тончайшего ферромагнитного порошка на границах от-  [c.267]

Появление спутниковой, тропосферной, космической связи и глобального радио- и телевещания на сверхвысоких частотах, сверхдальней радиолокации, радиоастрономии, радиосиектросконии потребовало создания радиоприемных устройств с ничтожно малым уровнем шума. Новые возможности в этом отношении открылись перед радиотехникой в связи с достижениями в области изучения свойств различных веществ при глубоком их охлаждении и в связи с освоением новых методов построения радиоприемных схем. В результате этого в 50-х годах появились идеи создания параметрических и квантовых парамагнитных усилителей. Такие схемы обычно охлаждают с помощью жидкого азота, а в последнее время — жидкого гелия. Современные параметрические усилительные схемы осуществляются на основе использования для изменения параметров схемы диодов, ферритов, полупроводников и других нелинейных элементов. Квантовые парамагнитные усилители в настоящее время строятся на двух нринцинах. В первом из них взаимодействие волны слабого сигнала с усиливающим парамагнитным веществом происходит в объемном резонаторе (усилители резонаторпого тина), а во втором — в замедляющих волноводах (усилители бегущей волны). Все эти устройства мало похожи на привычные радиоприемники и пока еще достаточно сложны в осуществлении и эксплуатации, но зато их чувствительность может быть доведена до 10 вт.  [c.380]

Для получения резин, отвечающих разносторонним требованиям машиностроения, в состав резиновой смеси наряду с каучуком вводят различные химикаты — добавки (вулканизующие вещества, стабилизаторы, активаторы и др.), усилители, например углеродные сажи, повышающие разрывную прочность и износостойкость резин, их сопротивление образованию и разрастанию трещин и другие свойства, а также минеральные усилители (двуокись кремния, окись цинка или магния, каолин и др.). Важную роль в улучшении некоторых конструкционных свойств резин и облегчении процессов смешения и переработки сырых резиновых смесей играют мягчители или пластификаторы, например различные нефтяные масла, битумы и т. п. Каучуки, в которые на стадии их производства вводятся нефтяные масла, получили название масляные наполненные сажами — сажевые наполненные сажей и маслом — сажемасляные.  [c.158]

По электрическим свойствам все ферриты относятся к полупроводникам. Их применяют для магнитопрово-дов, работающих в слабых и сильных магнитных полях высокой частоты (до 100 МГц), и в импульсном режиме. Кроме радиотехники их также применяют для изготовления магнитных усилителей, сердечников трансформаторов и катушек индуктивности, деталей отклоняющих систем, статоров и роторов высокочастотных двигателей, сердечников быстродействующих реле, термомагнитных компенсаторов и т. д. Возможность применения ферритов в полях высокой частоты определяется главным образом их большим удельным электрическим сопротивлением, благодаря которому реактивное и тепловое действие вихревых токов получается незначительным даже у магнитопрово-дов сплошного сечения. По этой же причине индукция в ферритовых магни-топроводах может иметь даже большую величину, чем в магнитопроводах из  [c.189]


Применяется в основном в виде соединений РЬС1 ионные кристаллы применяются в полупроводниковой технике для изготовления элементов термисторов и пьеэоэлементов, благодаря способности к электронной фотопроводимости под влиянием облучения рентгеновскими лучами или потоком электронов. Галоидные соединения Rb используются в производстве специальных электронно-лучевых трубок благодаря своей способности к поглощению в возбужденном состоянии определенной части спектра. НЬ 04 (сульфат рубидия) — перспективен как полупроводниковый материал. НЬНгР04 (однозамещенный фосфат рубидия), обладающий пьезоэлектрическими свойствами, применяется для изготовления пьезоэлементов диэлектрических усилителей и деталей современных счетных машин. Соединения рубидия применяются в люминофорах, электронно-лучевых и других трубках. Соли рубидия в основном применяются для изготовления фотокатодов благодаря легкой ионизации атомов рубидия под действием волн света. Является перспективным материалом для настоящей цели, способным оттеснить цезий. Рубидиевые фотокатоды применяются и в фотоэлементах и фотоэлектронных умножителях  [c.349]

На рис. 91 приведена блок-схема для решения системы уравнений (7.73). Основными решающими элементами являются операционные усилители 1—7 и функциональные преобразователи ФП1, ФП2, предназначенные для формирования нелинейной восстанавливающей силы R у). Остальные элементы схемы предназначены для осуществления тех логических операций, которые вытекают из свойств и характера исследуемой системы. Усилители 8—10 служат для формирования аналоговой динамической памяти формирования и хранения остаточных деформаций системы и для подачи последних на входы функциональных преобразователей (через усилитель 6), где происходит смещение начала координат нелинейной характеристики системы [см. выше описание формирования функции R (у) ]. Реле РО и РНУ задают режимы работы блока памяти ( Ввод информации — Память ). Когда POI и РНУ1 обесточены, операционный усилитель 9 работает в режиме Память , а 10 — в режиме Ввод информации . Эти режимы меняются на противоположные, когда обесточены реле Р02 и РНУ2.  [c.311]

В настоящее время наиболее интенсивные работы проводятся на монокристаллах СбЗ. Вызвано это, с одной стороны, высокими пьезоэлектрическими свойствами данного кристалла по сравнению со всеми прочими кристаллами группы А В ( 33 = 10,32 X X 10" ( 55 = 5,18 10" ) [74], а с другой стороны, возможностью использовать кристаллы С(35 для усиления ультразвуковых волн [75] и построения как активных линий задержки, так и усилителей радиочастотного сигнала с двойным преобразованием. Поэтому использование в этих системах и преобразователей, и звукопро-вода из сульфида кадмия упрощает задачу их акустического согласования, что позволяет построить систему более широкополосную с меньшим отношением сигнала к шуму, который вызывается нежелательными отражениями ультразвуковых волн от торцевых граней звукопровода. Кроме того, использование преобразователей такого типа в интегральных схемах позволяет значительно упростить конструкцию указанных устройств.  [c.326]


Смотреть страницы где упоминается термин Свойства усилителя : [c.129]    [c.39]    [c.252]    [c.408]    [c.115]    [c.303]    [c.129]    [c.91]    [c.134]    [c.20]   
Смотреть главы в:

Ультразвуковой контроль материалов  -> Свойства усилителя



ПОИСК



Усилители противокоррозионных свойств



© 2025 Mash-xxl.info Реклама на сайте