Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Химическая связь ионная

Различают четыре типа химической связи ионную, ковалентную, металлическую и Ваш-дер-Ваальса. Последняя ха-  [c.94]

Водородная связь относится к группе химических связей. Однако если обычные типы химический связей — ионная и ковалентная — имеют энергию связи 20—200 ккал/моль, то водородная связь имеет значительно меньшую энергию — от 5 до  [c.35]


По характеру взаимодействия частиц кристаллического тела различают следующие типы химических связей ионную, ковалентную, молекулярную и металлическую.  [c.68]

С другой стороны, адсорбционная теория опирается на тот факт, что большинство металлов, подчиняющихся определению 1, являются переходными металлами в периодической системе (т. е. они имеют электронные вакансии или неспаренные электроны в d-оболочках атома). Наличие неспаренных электронов объясняет образование сильных связей с компонентами среды, особенно с Оа, который также содержит неспаренные электроны (что приводит к появлению парамагнетизма) и образует ковалентные связи в дополнение к ионным. Кроме того, переходные металлы имеют высокую температуру возгонки по сравнению с непереходными, что благоприятствует адсорбции компонентов окружающей среды, так как атомы металла стремятся остаться в кристаллической решетке, а образование оксида требует выхода из нее. Образование химических связей при адсорбции кислорода переходными металлами требует большой энергии, поэтому такие пленки называются хемосорбционными, в отличие от низкоэнергетических пленок, называемых физически адсорбированными. На поверхности непереходных металлов (например, меди и цинка) оксиды образуются очень быстро и любые промежуточные хемосорбционные пленки являются короткоживущими. На переходных металлах хемосорбированный кислород термодинамически более стабилен, чем оксид металла [22]. Многослойная адсорбция кислорода, характеризующаяся ослаблением связей с металлом, приводит с течением времени к образованию оксидов. Но подобные оксиды менее существенны при объяснении пассивности, чем хемосорбционные пленки, которые продолжают образовываться в порах оксида.  [c.81]

Наиболее типичны первые две химические связи — ковалентная и ионная.  [c.9]

Кроме двух наиболее типичных химических связей — ковалентной и ионной различают межмолекулярные связи, возникающие вследствие действия универсальных сил Ван-дер-Ваальса, и металлические связи.  [c.10]

Различают две группы межатомных и межмолекулярных связей, имеющих электрическую природу 1) физические (ван-дер-ваальсовские) и 2) химические (ионная, ковалентная, металлическая, водородная, донорно-акцепторная и их сочетания). Прочность химических связей (энергия, требуемая для разъединения вещества на отдельные молекулы, атомы или ионы) составляет десятки и сотни килоджоулей, а физических — доли и единицы килоджоуля.  [c.433]


В диэлектриках с ионным типом химической связи под действием электрического поля происходит смещение положительных ионов относительно отрицательных. Возникающая таким образом  [c.280]

Ситуация становится более сложной, поскольку для атома одного и того же элемента радиусы (ковалентный, металлический, ионный) не совпадают между собой. Это свидетельствует о зависимости эффективных радиусов не только от природы атомов, но и от характера химической связи, координационного числа и других факторов.  [c.20]

Наиболее проста природа ионной связи. Для ее описания не требуется привлечения квантовой механики. Химическая связь обеспечивается за счет электростатического притяжения ионов.  [c.95]

Существует два типа химической связи а) ионная связь, б) ковалентная связь.  [c.298]

Химические связи между атомами вещества делятся на ионные, атомные (или ковалентные), металлические и молекулярные. Материалы, полученные из веществ с разными связями, сильно различаются по своим электрическим и другим свойствам.  [c.6]

В настоящее время известно несколько сотен сегнетоэлектриков, которые по типу химической связи и физическим свойствам принято подразделять на две группы 1) ионные кристаллы, к которым от-  [c.243]

Можно предположить, что чистое кварцевое стекло должно обладать наиболее ярко выраженными защитными свойствами ввиду реализации в нем весьма прочных химических связей в кремнекислородных тетраэдрах. Введение в его состав катионов будет сопровождаться поляризацией ионных комплексов, что повлечет за собой ослабление внутренних связей между этими комплексами ввиду образования структурных элементов типа  [c.246]

Более прочные связи возникают в результате перестройки электронных оболочек атомов при их сближении — образовании ионов, обобществлении валентных электронов в валентных или металлических связях. Эти более мощные силы адгезии объединяют обычно под одним названием — химические связи.  [c.74]

Предварительная выдержка стали в ингибированных растворах, как правило, улучшает защитную способность ингибиторов и их смесей. Это говорит о том, что ионы ингибитора адсорбируются на поверхности, образуя с металлом прочную химическую связь, которую не удается разрушить агрессивными ионами при последующем добавлении их в электролит.  [c.96]

По современным научным воззрениям не только органические, но и неорганические неметаллические материалы имеют полимерное строение. Ковалентные, ионные и дисперсионные химические связи в полимерных материалах исключают наличие в объеме тела подвижного электронного газа, образующего металлическую связь и легко переносящего тепловую и электрическую энергию. Поэтому одним из основных отличий неметаллических материалов от металлов, сплавов и графита имеющего также металлическую связь между плоскостями кристаллической решетки) являются их тепло- и электроизоляционные свойства.  [c.7]

Символ элемента Радиус атома Ион ЭКСП. Радиус иона П 3 Межатомное расстояние (длина химической связи)  [c.276]

Взаимосвязь энтропии и энтальпии комплескообразования -термодинамический компенсационный эффект - пдчиняется линейным соотношениям AS = (2,9 0,2) ДН + (33,7 5) в основном и Д8 = =(3,0 0,4)ДН + (56,3 7) в возбужденном состоянии Eu(fod)3. Полученные результаты являются прямым доказательством влияния электронного возбуждения 4f - оболочки Eu(fod)3 на скорость и характер реакций комплексообразования с кетонами вследствие участия f-электронов в химических связях иона ЕЬ(Ш) .  [c.53]

Специфическое взаимодействие в ионите. Выше указывалось, что специфическое взаимодействие обусловлено образованием прочных химических связей (ионных пар, ассоциатов) между ионами и ионитами. Оно, как и сольватация, определяет величину отношений /а//в и /а//в и во многих случаях оказывает решающее влияние на избирательность ионита. Специфическое взаимодействие особенно значительно выражено у комплекси-тов, а также у слабокислотных катионитов с ионами Н+, Fe(III), Bi(III), Th(IV) и т. д. и у слабоосновных анионитов с ионами ОН, Си, Со и т. д. [22]. Оно связано с наличием ковалентной  [c.39]


Ионные кристаллы представляют собой соединения с преобладающим ионным характером химической связи, в основе которой лежит электростатическое взаимодействие между заряженными ионами. Типичными представителями ионных кристаллов являются галогениды щелочных металлов, например, со структурой типа Na l и s l.  [c.70]

При сближении ионов до расстояний порядка их собственных размеров валентные эдектроны данного атома вступают в сильное взаимодействие с соседними ядрами и их электронными оболочками, обеспечивающее возникновение химической связи. Поэтому валентные электроны нельзя считать локализованными у данного атома и в некоторых случаях они получают возможность перемещаться по всему кристаллу. Конечно, в молекулярных кристаллах связь между атомами, образующими решетку, имеет характер ван-дер-ваальсовых сил. Однако в подавляющем больщинотве явлений, происходящих в твердых телах, электроны играют самую существенную роль. Поэтому рассмотрим наиболее общий случай, когда в кристалле содержатся ионы и валентные электроны.  [c.47]

Уравнение (13.7) легко получается для смеси, состоящей из идеальных газов. Однако оно применимо, с достаточной степенью приближения, и для реальных смесей. В случае химически реагирующих газов это объясняется тем, что вклад в фб ), обусловленный химическими связями и равный ф°, значительно больще вклада, связанного с вандерваальсовским или ионным взаимодействием, и поэтому последний можно принимать таким же, как и для идеальных газов. В случае нейтральных растворов формула (13.7) определяет химический потенциал растворителя, если раствор является разбавленным. Для растворов веществ, состоящих из сходных молекул, (в частности, для смесей изотопов) формула (13.7) удовлетворяется с высокой Ътепенью точности. К растворенному веществу формула (13.7) неприменима. Химический потенциал растворенного вещества в случае нейтрального разбавленного раствора  [c.484]

Механизм радиационно-химических реакций таков. Поток ядерных частиц вызывает в среде возбуждение, ионизапию, диссоциацию и диссоциативную ионизацию молекул. Возникшие при этом возбужденные молекулы и ионы вступают в химические реакции. либо непосредственно, либо через промежуточное образование химически высокоактивных свободных радикалов. В последнем случае в реакции могут вовлекаться молекулы, не подвергавшиеся непосредственному облучению. Так как энергия ядерных излучений значительно превышает энергию любых химических связей, то облучение может разрывать и очень прочные связи. Это ведет к образованию таких химически высокоактивных ионов и радикалов, которые не удается получать традиционными химическими методами. Тем самым открываются возможности осуществления сильно эндотермических реакций и реакций, запрещенных высоким активационным барьером.  [c.660]

Однако это выражение применимо с достаточной степенью приближения и для реальных смесей. В случае химически реагирующих газов это очевидно, так как вклад в ф< ), обусловленный химическими связями и равный ф(/>, значительно больше вклада, связанного с ван-дер-вааль-совым, или ионным взаимодействием (поэтому последний можно принимать таким же, как и для идеальных газов). В случае нейтральных растворов уравнение (7.1) определяет химический потенциал растворителя, если раствор сильно разбавлен. Для растворов веществ, состоящих из сходных молекул (в частности для смеси изотопов), уравнение (7.1) удовлетворяется с высокой степенью точности.  [c.469]

Критерий сходства химических связей. Изоморфные смеси могут образовывать вещества, природа химической связи в которых одинакова или аналогична. Классическим примером является отсутствие смесимости в системе Na l — РЬ5. Соединения в этой системе полностью изоструктурны, их катионы и анионы взаимно индифферентны, размеры катионов и анионов соответственно очень близки. Однако природа химической связи здесь существенно различна чисто ионная в ЫаС1 и чисто ковалентная в РЬ8.  [c.73]

Основная причина почвенной коррозии — наличие воды. Даже при минимальной влажности почва становится ионным проводником электрического тока, т.е. представляет собой электролит. К почвенной коррозии применимы основные закономерности электрохимической коррозии, справедливые для жидких электролитов. Однако электрохимический характер почвенной коррозии имеет особенности, отличающие ее от коррозии при погружении металла в электролит или от коррозии под пленкой влаги. Это связано с тем, что почва имеет сложное строение и представляет собой гетерогенную капиллярно-пористую систему. Почвы обладают водопроницаемостью и капиллярным водоперемещением, они накапливают и удерживают тепло и вместе с тем снижают испаряемость влаги. Если вода находится в порах или в виде поверхностных пленок на стенках пор, то ее связь с почвой имеет физико-механический характер. При этом влага удерживается в почве в неопределенных соотношениях. Другой вид связи — физико-химическая, при которой возникают коллоидные образования почвы. Возможна также химическая связь, которая характеризуется строго определенным молекулярным соотношением компонентов, например при образовании гидратированных химических соединений.  [c.41]

Прогнозирование механических свойств материалов и покрытий основывается на корреляции между механическими свойствами твердых тел и природой и энергией химической связи в веществах (кристаллах веществ), образующих твердое тело. Так, высокой прочностью обладают магнийфосфатные цементы, поскольку Mg имеет как высокие электростатические характеристики (ионный потенциал равен 5.12), так и заметную способность образовывать ковалентные связи. Для систем типа цементных прочность камня тем выше, чем выше доля ковалентности связи, при этом, однако, необходимо, чтобы координационные числа (к. ч.) катиона в цементирующих фазах не были ниже 4. Для материалов, полученных на основе связок, прочностные свойства тем выше, чем большая степень полимерности достигается при отвердевании связки — чем более сшитым получается полимерное тело. Это, видимо, имеет место в том случае, когда степень ионности связи в полимере существенна, а к. ч. катиона равно 4. При к. ч.=2- -3 образуются линейные или слоистые полимеры, макромолекулы которых в полимерном теле связаны молекулярными или водородными силами, что делает такие тела менее прочными по сравнению со сшитыми полимерами, например кварцем. С этой точки зрения высокие механические характеристики будут получаться при использовании связок на основе многозарядных элементов (А1) и особенно многозарядных -элементов (2г, Сг).  [c.10]


Максимальная реализация свойств полимерной матрицы и армирующего наполнителя в композитах возможна при наличии оптимальной адгезии, условия получения которой установить довольно трудно. Известно, что адгезия, обусловленная только плотным контактом между органическим полимером и гидрофильным минералом, не обеспечивает образования водостойкого соединения. Такое соединение не может быть образовано и посредством прямых химических связей, так как органический полимер с устойчивыми ковалентными и минерал с ионными связями являются слишком разнородными материалами. Хорошая адгезия между такими разнородными материалами может быть получена в результате иапользования третьего материала в виде промежуточного слоя между матрицей и наполнителем.  [c.9]

Адсорбщм ингибиторов на поверхности металла происходит в двойном злектрическом слое. На их адсорбцию существенно влияют величина й знак заряда металлической поверхности. Адсорбция нейтральных молекул ингибитора определяется силами межмолекулярного взаимодействия (силы Ван-дер-Ваальса) ври.адсорбции ингибиторов, диссоциирующих на ионы, определяющим является электростатическое притяжение иона к заряженной поверздаости металла. Для переходных металлоб (железо, платина и др.) адсорбция ингибиторов усиливается возникновением химической связи между молекулами ингибитора и адсорбирующей поверхностью [4].  [c.109]

В стекле атомы расположены более беспорядочно по отношению друг к другу, чем в поликристалличе-ских металлах. Оно обладает жесткостью твердых кристаллических тел, но не имеет правильной кристаллической структуры. Изучение стекол обнаруживает микронеоднородности их структуры. В стекле нет полного хаоса и в то же врегля нет решетки, которая сопутствует кристаллическим веществам. Существует несколько гипотез строения стекла. Так, ионная теория предполагает ионный тип связей в стекле, в то время как полимерная теория исходит из преимущественно ковалентного характера химических связей. Ученые ищут концепцию, пригодную для всех видов стекла. Что же касается механизма деформации сдвига, то в стекле он диффузионный, в отличие от реальных кристаллов, где он дислокационный.  [c.96]

В плане развития работ в этом направлении на кафедре были рассмотрены вопросы электронной природы твердости металлов, неметаллов и сплавов (Л. И. Баженова, А А. Иванько) и обобщены в монографическом справочнике электронного строения сложных карбидо-гидридных фаз (Л. Н. Баженова, канд. техн. наук В. В. Морозов) — эта работа привела к выводам о двойственном состоянии водорода в гидридах и карбидо-гидридах как в форме протонов, так и отрицательных гидрид-ионов, позволила объяснить причины более сильной связи водорода в карбидо-гидридах по сравнению с гидридами, представить схему химических связей в этих соединениях, а также существенно развить представление о структуре фаз внедрения вообще. Развитие представлений конфигурационной модели применительно к ферритам с использованием редкоземельных элементов было выполнено  [c.78]

КРИСТАЛЛЫ валентные (атомные) содержат в узлах кристаллической решетки нейтральные атомы (С, Ge, Те и др.), между которыми осуществляется гомеополярная связь, обусловленная квантово-механическим взаимодействием глобулярные представляют собой частный случай молекулярных кристаллов и имеют вид клубка полимеров жидкие обладают свойствами как жидкости (текучестью), так и твердого кристалла (анизотропией свойств) внутри малых объемов идеальные не имеют дефектов структуры иопные обладают гетерополярной связью между правильно чередующимися в узлах кристаллической решетки положительными и отрицательными ионами квантовые характеризуются большой амплитудой нулевых колебаний атомов, сравнимой с межатомным расстоянием металлические образуются благодаря специфической химической связи, возникающей между ионами кристаллической решетки и электронным газом (Си, А1 и др.) молекулярные (Лг, СН , парафин и др.) формируются силами Ван-дер-Вальса, главным образом дисперсионными нитевидные вытянуты в одном направлении во много раз больше, чем в остальных оптические [активные поворачивают плоскость поляризации света вокруг падающего линейно поляризованного луча анизотропные обладают двойным лучепреломлением, состоящим в том, что луч света, падающий на поверхность кристалла, раздваивается в нем на два преломленных луча двуосные имеют две оптические оси, вдоль которых свет не испытывает двойного лучепреломления одноосные (имеющие одну оптическую ось отрицательные, в которых скорость обыкновенного светового луча меньше, чем скорость распространения необыкновенного луча положительные, в которых скорость распространения обьпсновенного светового луча больше, чем скорость распространения необыкновенного луча))] КРИСТАЛЛИЗАЦИЯ— образование кристаллов из паров, растворов, расплавов веществ, находящихся в твердом состоянии в процессе электролиза и при химических реакциях  [c.244]

Диаграмма энергии диссоциации для ван-дер-ваальсовых милекул, кластерных ионов и молекул с химической связью. Рядом с указанной молекулой или ионом в скобках дано значение энергии в эВ для кластерных ионов и молекул с химической связью в 10 эВ — для ван-дср ваальсовых молекул.  [c.373]


Смотреть страницы где упоминается термин Химическая связь ионная : [c.555]    [c.54]    [c.44]    [c.9]    [c.98]    [c.67]    [c.47]    [c.15]    [c.9]    [c.27]    [c.156]    [c.113]    [c.154]    [c.695]    [c.185]   
Теория сварочных процессов (1988) -- [ c.9 , c.10 ]



ПОИСК



Иониты

Ионная связь

Ионов

По ионная

Связь химическая

Типы химической связи. Ковалентная связь. Ионная связь Ион молекулы водорода. Метод орбиталей

Химическая (-ий) ионная

Химическая связь ионная связь

Химическая связь ионная связь



© 2025 Mash-xxl.info Реклама на сайте