Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интенсивность излучения, спектральные характеристики

Изменение температуры тела не только вызывает изменение абсолютной величины интенсивности излучения, ио и сопровождается изменением спектрального состава, или цвета излучения. С повышением температуры повыщается интенсивность коротковолнового излучения и уменьшается интенсивность длинноволновой части спектра. Одной из важных характеристик лучистого теплообмена является к о э ф-  [c.348]

Коэффициент поглощения. Для характеристики объемного характера поглощения газов применяется спектральный коэффициент поглощения, показывающий относительное уменьшение спектральной интенсивности излучения на единице длины пути луча  [c.185]


Широкое применение для измерения температуры и плотности потока нагретого газа находят методы спектрально-оптической диагностики. При этом информацию о состоянии газа можно получить, исследуя характеристики его излучения (поглощения) интенсивность излучения и длину волны линий, ширину и форму контура линий, зависимость интенсивности непрерывного излучения от длины волны и т. д. Перед применением того или иного метода измерения необходимо предварительно исследовать спектральные характеристики потока. Лишь после этого можно выбрать определенный оптический метод определения температуры, который обеспечивает достаточную точность измерения.  [c.322]

Через любой мысленно выделенный в среде замкнутый объем проходят в каждый момент времени электромагнитные волны всех частот во всевозможных направлениях. С точки зрения квантовых представлений объем заполнен фотонами различных частот (следовательно, и энергий), движущихся со скоростью света в вакууме по всевозможным направлениям. Для того чтобы иметь возможность точно оценить результирующий перенос излучения в исследуемой системе, необходимо знать распределение электромагнитной энергии по частотам и направлениям для любой точки объема и любого момента времени. С этой целью вводится детальная характеристика— спектральная интенсивность излучения Л, зависящая в общем случае от координат рассматриваемой точки М, времени t, направления s и частоты v.  [c.18]

Зная величину спектральной интенсивности излучения /v, нетрудно определить и все остальные характеристики ноля излучения. Умножая М, х, s, v) на элементарный интервал частот dv и производя интегрирование по всем частотам, как видно из исходного выражения (1-11), получаем величину полной (интегральной) интенсивности излучения  [c.20]

Таким образом, уравнение (3-18) с граничными условиями (3-20) при условии пренебрежения нестационарным членом сводится к системе интегральных уравнений (3-30) и (3-33) относительно величин / ф , и /дф, , решив которые можно по (3-27) найти поле спектральной интенсивности излучения по всему объему среды, если по условию заданы поле температур и радиационные характеристики в объеме и на граничной поверхности.  [c.103]

Граничные условия к (12-31) задаются уравнением связи спектральной интенсивности излучения К (s) в каждой точке N граничной поверхности теплообмена F с радиационными характеристиками и температурой поверхности. Это уравнение записывается следующим образом (3-20)  [c.340]


Резонатор является оптической системой, позволяющей сформировать стоячую электромагнитную волну и получить высокую интенсивность излучения, необходимую для эффективного протекания процессов вынужденного излучения возбужденных частиц рабочего тела лазера, а следовательно, когерентного усиления генерируемой волны. Оптические резонаторы в квантовой электронике не только увеличивают время жизни кванта в системе и вероятность вынужденных переходов, но и, так же как резонансные контуры и волноводы в классической электронике, определяют спектральные характеристики излучения.  [c.40]

При исследовании поглощательной способности газов, помимо указанных влияний, было изучено также влияние температуры источника падающего излучения на интегральную поглощательную способность газа. К настоящему времени достаточно полно изучены основные спектроскопические характеристики СОа и НаО, необходимые для расчетов спектрального распределения интенсивности излучения газов.  [c.23]

При расчетах теплообмена в топках обычно используются две основополагающие характеристики топочного излучения степень черноты топки и степень черноты факела. Спектральная степень черноты топки определяется как отношение спектральной интенсивности падающего излучения к спектральной интенсивности излучения абсолютно черного тела при одинаковых значениях длины волны излучения X и температуры факела Тф.  [c.97]

В связи со значительной избирательностью радиационных характеристик большинства веществ и технических материалов,особенно, цля инфракрасного излучения, целесообразно получать сначала (в пределах расчетного интервала длин волн собственного теплового излучения) спектральные интенсивности потока радиационного переноса Q вт/см .мкм), а затем произ-  [c.591]

Анализ переноса излучения усложняется тем обстоятельством, что распространение излучения в каждой точке среды не может быть представлено одним вектором как в случае переноса тепла за счет теплопроводности. Для характеристики излучения, падающего в данную точку, необходимо знать излучение со всех направлений, так как потоки излучения со всех направлений не зависят друг от друга. Поэтому для описания количества энергии излучения, переносимого в данном направлении в единицу времени, часто используется фундаментальная величина, называемая спектральной монохроматической) интенсивностью излучения. Для определения этой величины рассмотрим элементарную площадку dA вокруг точки пространства с координатой г, характеризуемую единичным вектором п в направлении нормали (фиг. 1.6). Пусть dE — количество энергии излучения в интервале частот между v и v + dv, распространяющегося внутри бесконечно малого телесного угла rfQ в направле-  [c.23]

На рис. 42 показана схема измерения максимального контраста фотоматериала, экспонированного по схеме рис. 41. Здесь ) — лазер 2 — коллиматор 3 — голограмма 4 — изображение шара, воспроизводимое голограммой 5 — изображение черного отверстия в шаре 6 — фотоприемник. Перемещая фотоприемник 6 из положения а в положение б, измеряют интенсивность излучения в восстановленном изображении шара на белой поверхности и черном отверстии. Схемы рис. 41 и 42 могут быть применены для исследования отражательных голограмм. Если голограмма восстанавливается белым светом с определенной цветовой температурой, а фотоприемник имеет спектральную характеристику, приведенную к спектральной характеристике глаза, то измеренные значения дифракционной эффективности и шума более правильно и объективно учитывают физиологические особенности восприятия зрителем. Тест-кадр голографического фильма для измерения максимального контраста показан на фото 4.  [c.85]

На рис. 18 показаны спектральные характеристики глаза. Их рассмотрение показывает, что только излучение с длиной волны 0,4...1,4 мкм достигает сетчатки глаза (самого чувствительного места), проходя через внешние слои глаза. Из графика видно, что излучение лазеров с длиной волны менее 0,4 и более 1,4 мкм не будет воздействовать на сетчатку. Но это не значит, что глаз не пострадает, так как при большой интенсивности излучения будет повреждена роговая оболочка. Именно поэтому нужно быть особенно осторожным с лазером на СОг. Излучение невидимо глазом, а опасность велика [14].  [c.47]


Для исследования спектральных характеристик газов в настоящей работе был применен метод одновременной регистрации развернутых во времени спектрограмм и абсолютной интенсивности излучения для некоторого участка спектра.  [c.309]

На рис. 190 приведены световые (б) и электрические в) характеристики тлеющего разряда. Для тлеющего разряда характерны малая плотность тока и большое падение напряжения. Спектральный состав излучения определяется родом газа, наполняющего трубку. Свечение вдоль трубки крайне неравномерно, оно пересекается темными промежутками. На рис. 190,а эти области отмечены вертикальными границами, а па схеме б показано распределение интенсивности излучения вдоль трубки.  [c.251]

Разного сорта эффекты, обусловленные нелинейностью показателя преломления стекла, начинают обычно сказываться при интенсивностях 10 Вт/см . Среди этих эффектов наиболее существенным для нас является эффект самофокусировки, основные особенности которого и влияние его на характеристики излучения рассмотрены в гл. 5 и 6. Здесь лишь отметим, что следствием самофокусировки могут быть изменения пространственных, временных и спектральных характеристик излучения, а также разрушения среды.  [c.50]

Влияние спектрального интервала и размеров источника на видность интерференционной картины. Рассмотрим влияние временной и пространственной когерентности источника излучения на характеристики интерференционных полос. Учтем, что источник имеет определенный интервал частот (или волновых чисел Аа), в котором он излучает. Решим сначала вопрос о допустимой монохроматичности источника света из обш,их соображений. Обратимся к выражению (4.2) и учтем, что постоянная и переменная части интенсивности должны быть распространены на диапазон Аа = — а  [c.36]

Спектральная характеристика излучения разных тел различна и зависит от источника излучения и материала тела излучения. Коротковолновое излучение с длиной волны Я=760— 2500 нм характерно для ламповых излучателей, называемых светлыми . Излучение с Я=3500—4500 нм дают нагретые до 377—447 °С чугунные плиты, называемые темными излучателями. Например, максимум интенсивности ИК-излучения лампы накаливания ЗС-2 приходится на 1200 нм, а чугунной плиты, нагретой до 377 °С — на 4500 нм.  [c.244]

Опыты, проведенные на Горьковском автомобильном заводе, показали, что при одинаковых площадях световых отверстий, спектральных характеристиках и интенсивностях излучения реф-  [c.264]

Особое значение имеют следующие отделы А. а) колориметрия (см.), оценивающая действие радиации на глав человека с точки зрения цветового восприятия (основных нервных возбуждений), и б) фотометрия (см.), оценивающая радиацию с точки зрения суммарного действия ее на глаз человека (действующая иа глаз человека радиация называется светом). Лишь в тех случаях, когда приемник обладает одинаковой чувствительностью к радиации всех длин волн, можно в качестве характеристики радиации пользоваться ее полной интегральной интенсивностью. Такая оценка радиации представляет особый интерес для геофизики и гелиотехники, т. к. характеризует тепловое ее действие в тех случаях, когда приемник одинаково поглощает радиацию всех длин волн. Поле радиации (в фотометрии — световое поле) в данной точке кроме спектрального состава радиации м. б. охарактеризовано такше направлениями и величинами отдельных ее потоков, зависящими от распределения в разных направлениях интенсивности излучения (в фотометрии яркостей) поверхностей, посылающих радиацию в данную точку, или же от их черной температуры. Т. к. в большинстве  [c.257]

Солнечная радиация. Пассажирский лайнер круглый год находится на аэродроме. Часть времени он проводит в полете на высоте около 10 ООО м. В среднем налет самолета в год 2000 ч, из них около 1600 ч на высоте 8000—10 ООО м, где спектральная характеристика солнечной радиации существенно отличается от околоземной. Солнечное излучение на указанной высоте (см. рис. 3) содержит значительно большее количество коротковолновой радиации. Находясь на таких высотах, самолет выходит за зону облаков, где его поверхность в любую погоду подвергается интенсивному облучению. Известно, что коротковолновая радиация с длиной волны менее 4000 А оказывает значительное воздействие на фотохимические процессы в пленке лакокрасочного покрытия, а при длине волны менее 2900 А (характерно для излучения ртутно-кварцевой лампы ПРК-2) процессы разрушения протекают особенно интенсивно. Видимая и инфракрасная области солнечного света оказывают значительно меньшее влияние на старение полимеров и, в частности, на изменение декоративных свойств.  [c.25]

Таким образом, в зависимости от природы поверхности и температуры нагрева спектральная характеристика излучения различных тел неодинакова. Например, максимум интенсивности ИК-излучения лампы ЗС-2 (зеркальная для сушки) приходится на 1200 нм. а чугунной плиты (Т = 650 К) — на 4500 нм [3, с. 8].  [c.268]

Для характеристики степени монохроматичности спектральных линий, т. е. излучения практически изолированных атомов, надо исследовать распределение интенсивности излучения по частотам с помощью прибора высокой разрешающей способности, например интерферометра Майкельсона или Фабри—Перо. Результат такого исследования можно представить в виде диаграммы (рис. 28.16), где по оси абсцисс отложены длины волн, а по оси ординат — соответствующие интенсивности. Конечно, нижние части полученных кривых очень мало достоверны, и можно полагать, что в идеальных условиях кривые спадали бы к нулю асимптотически. В разных условиях опыта (различие в природе пара, различие в температуре и давлении его, в степени иониза-0,01 000 0,03 Щ ции и т. д.) форма спектральной линии, изображенная на рис. Рис. 28.16. Контур линии испуска- 28.16, может быть различной. В качестве характеристики ширины линии условно принимают расстояние в ангстремах между двумя точками А, В, где ордината достигает половины максимальной. Эту условную характеристику принято называть шириной спектральной линии. Как сказано, она в очень благоприятных случаях может составлять 0,001 А и менее, но обычно бывает значительно шире кроме того, и форма линии мом ет сильно отступать от приведенной на рисунке, будучи иногда заметно асимметричной.  [c.572]


Цветовые пирометры могут быть выполнены по одно- и двухканальной схеме. При двухканальной схеме для измерения спектральных интенсивностей излучения /л, и /л, используют два приемника излучения (чаще всего ими являются фотоэлементы). При юдноканальной схеме отношение интенсивностей излучения /л,//я измеряется одним фотоэлементом, который поочередно освещается излучением с длиной волны Я1 и Яг- Существенным недостатком двухканальных схем является зависимость характеристик пирометра от стабильности свойств фотоэлементов каждого канала, которые с течением времени могут меняться неодинаково. Поэтому в большинстве случаев цветовые пирометры выполняются по одноканальной схеме.  [c.190]

Пламяфотометрический метод основан на возбуждении атомов определяемого элемента действием высокой температуры. Возбужденные атомы, возвращаясь в нормальное, невозбужденное состояние, излучают свет вполне определенной спектральной характеристики, присущей только данному элементу. Специальными светофильтрами именно это специфическое излучение может быть отфильтровано от посторонних излучений, и его интенсивность измерена фотоэлементом или фотосопротивлением. Так как интенсивность измеряемого излучения определяется не только концентра-  [c.218]

Ниже рассматриваются элементы теории оптической пирометрии, основанной на измерении яркости только в видимой части спектра излучения (Х = 0,4 -0,8 мк). В этом диапазоне длин волн при температурах излучателей, обычно встречающихся в печах, (<3 000° К) для определения спектральных характеристик интенсивности пзлучепия может быть использована формула Вина (3-3). Спектральная яркость излучения черного тела при температуре Т на основе этой формулы представляется в следующем виде  [c.42]

МНОГОФОТОННЫЙ ФОТОЭФФЕКТ — термин, объединяющий ряд фотоэлектрических явлений, при к-рых изменение электропроводности, возникновение эдс или эмиссия электронов происходят вследствие поглощения электроном вещества (т. е. в связанном состоянии) двух или более фотонов в одном элементарном акте. Практически все разновидности фотоэффекта (внутренний, вентильный, внешний) имеют свой мно-гофотонвый вариант , отличающийся тем, что электроны вещества приобретают необходимую энергию в процессе многофотонного поглощения, в то время как при обычном фотоэффекте требуемое возбуждение электронов достигается за счёт однофотонного поглощения. Это обстоятельство обусловливает гл. особенности М. ф. 1) М. ф. наблюдается при достаточно высоких интенсивностях / падающего излучения, достижимых лишь с помощью лазеров 2) величина фотоотклика вещества (фотоэдс, фототок) при М. ф. пропорциональна /т, ГД0 fil — порядок фотоэффекта, т. е. число фотонов, поглощаемых в одном акте 3) зависимость М. ф. от частоты излучения отражает спектральные характеристики многофотонного поглощения.  [c.168]

В таких жёстких режимах ток лидерной (незавершённой) стадии может превышать ток последующего завершённого С. р., замыкающего разрядный промежуток, а излучение разряда на этой стадии содержит интенсивную УФ-компоненту (вплоть до мягкого рентгена). Это излучение создаёт свободные фотоэлектроны на расстояниях, значительно иревышаюш их критич. размеры первичных лавин. При импульсном напряжении 50— 200 кВ вдоль поверхности диэлектрика легко возникают плазменные поверхности протяжённостью до 200 см, яркостная темп-ра к-рых может достигать 6-10 К, Специфика С. р. определяется активным взаимодействием плазмы разряда с поверхностью диэлектрика, что отражается на спектральных характеристиках излучения плазмы. Канал С, р, ограничен в пространстве ди-электрич. подложкой, поэтому площадь его сечения меньше, а погонное электрич. сопротивление соответственно больше, чем у свободного искрового разряда. Малая индуктивность и относительно большое сопротивление завершённого С. р. обеспечивают высокую мощность энерговыделения в канале разряда, что приводит к образованию плотной высокотемпературной плазмы с большой площадью излучающей поверхности (Й М ).  [c.544]

Пламяфотометрический метод основан на возбуждении атомов определяемого вещества высокой температурой. Возбужденные атомы, возвращаясь в нормальное состояние, излучают свет с вполне определенной спектральной характеристикой Интенсивность измеряемого излучения определяется не только концентрацией вещества, но и другими факторами количеством раствора, температурой пламени, расположением пламени относительно измерителя и т.п., поэтому перед определением требуется проводить калибровку прибора без изменения условий измерения.  [c.571]

Рис. 8.14. Временные и спектральные характеристики излучения волоконного ВКР-лазера (штриховые линии) и в режиме однопроходной генерации (сплошные линии). Шкала интенсивностей произвольная [104]. Рис. 8.14. Временные и <a href="/info/741749">спектральные характеристики</a> излучения волоконного ВКР-лазера (<a href="/info/1024">штриховые линии</a>) и в режиме однопроходной генерации (<a href="/info/232485">сплошные линии</a>). Шкала интенсивностей произвольная [104].
Единственным заметным отличием временных характеристик излучения лезеров на неодимовом стекше с неустойчивыми резонаторами от характеристик работающих в пичковом режиме (гл. 3) аналогичных лазеров с плоскими резонаторами явилось сокращение длительностей пичков [62] это является следствием более быстрого установления колебаний ( 3.3). Интегральные по времени спектральные характеристики при устойчивых и плоских резонаторах оказались неразличимыми. Это и неудивительно спектральное распределение излучения является, по существу, распределением интенсивности между модами с различными аксиальными индексами ( 3.3). Во всей центральной зоне неустойчивого резонатора (область / на рис. 3.15), играющей основную роль в механизме генерации, имеют место те же интерференция двух встречных пучков и образование стоячих волн, что и в плоском резонаторе. Поэтому механизм пространственной конкуренции аксиальных мод в резонаторах обоих типов одинаков, несмотря на то, что в устойчивом резонаторе периферийная часть активного элемента (область//на том же рисунке) заполнена излучением, распространяющимся только в одну сторону (см. также в 4.4 о проблеме спектральной селекции в кольцевых резонаторах).  [c.212]

Как видно из приведенных выше результатов, эффективность усиления импульсов может быть повышена за счет изменения уг-j[i0B0fl расходимости излучения на входе в усиливающую среду. Она в свою очередь зависит от степени дифракционного расплывания светового пучка на краях, определяемого способом его апо-дизации, спектральным составом усиливаемого излучения, временной структурой, поперечным распределением излучения, характером и степенью поляризации. При этом возможен также выбор материала усилительного каскада с несколько меняющимися характеристиками, поперечными размерами, формой и т. д. Принцип оптимизации может быть основан на построении семейства кривых зависимости полного усиления от интенсивности излучения на входе для различных параметров импульсов на выходе и характеристик усиливающей среды.  [c.195]

Часто требуется ослабить лазерный пучок до уровня энергии или мощности, соответствующего динамическому диапазону имеющегося приемника. Располагая хорошо откалиброванным ослабителем, можно также определить область, в которой чувствительность приемника следует некоторому предписанному закону, или исследовать характер отклонений от этого закона. При сравнительно низких интенсивностях, с которыми обычно имеют дело в оптике, в качестве ослабителей пользуются нейтральными фильтрами. Такой фильтр представляет собой прозрачную среду, например желатину или стекло, содержащие поглощающий материал подходящей концентрации. Спектральные характеристики такого материала слабо зависят от длины волны, по крайней мере в видимой области спектра, и поэтому они выглядят серыми или черными в зависимости от их общего поглощения. При работе с такими фильтрами в узких интервалах длин волн нужно соблюдать осторожность, ибо коэффициент пропускания типичных фильтров может изменяться в пределах видимого спектра почти в 2 раза. По этой причине, а также в силу того, что из-за взаимодействия излучения в результате поверхностного отражения внутри пачки таких фильтров общие вносимые потери совокупности фильтров могут быть не равными сумме индивидуальных вносимых потерь, следует калибровать каждый фильтр или пачку фильтров на нужной длине волны, когда требуется высокая точность измерений.  [c.137]


После затухания естественной фосфоресценции она может быть многократно воспроизведена путем облучения фосфора фильтрованным светом ртутной дуги. Особенно интенсивную фосфоресценцию возбуждает в Na l — Ag спектрально неразложенный свет ртутно-кварцевой горелки. При этом наблюдаются следующие интересные явления. При малых концентрациях активатора (от 0,1 до 0,001 мол. %) цвет фосфоресценции фиолетовый ( 420 m x), тогда как при больших концентрациях активатора (от 1 до 5 мол. %) максимум смещен в длинноволновую область (—450 Ш[х) и по цвету излучение становится голубым. Эти явления могут быть поняты в свете развиваемых Ф. Ф. Клементом (304) представлений о влиянии концентрации активатора на спектральные характеристики кристаллофосфоров.  [c.186]

В середине XX века были открыты качественно новые явления, возникающие при взаимодействии электромагнитного излучения с веществом. Эти открытия были стимулированы революционными изменениями в характеристиках источников света. Появление лазеров дало в руки экспериментаторов монохроматическое излучение оптического диапазона частот гигантской интенсивности, существенно превышающей amoJ myю интенсивность (1а = 3,61 10 Вт/см ). Соответственно напряженность поля лазерного излучения существенно превышает атомную напряженность поля (Ра = 5,14 10 В/см). Из сравнения этой величины с интенсивностью долазерных источников монохроматического излучения — спектральных ламп — составляющей величину порядка 1 10 Вт/см , ясно, что при взаимодействии лазерного излучения с веществом должна возникнуть качественно новая физика.  [c.12]

Обычно падающий на объект свет является полихроматическим, т. е. содержит набор электромагнитных волн различной интенсивности, разных частот и начальных фаз. Такой свет можно характеризовать как интегральными параметрами — лучистым потоком Ф, силой излучения /, излучательностью R, так и спектральными характеристиками, например спектральной характеристикой излучения источника света Р ( к), определяющей интенсивность излучения для каждой длины волны.  [c.82]

Фотодиодами называются преобразователи, в которых под воздействием лучистой энергии возникают электронно-дырочные пары, разделяемые р— -переходом и образующие фототок. Основными материалами для фотодиодов служат германий и кремний. Интегральная чувствительность фотодиодов может достигать 25—30 мА/лм. Кремниевые фотодиоды отличаются высокой стабильностью характеристик при изменении условий эксплуатации, малыми темновыми токами (следовательно, высоким порогом чувствительности), возможностью работы при больших обратных напряжениях. Германиевые фотодиоды обладают большей интегральной чувствительностью и более широкой, чем у кремниевых, спектральной характеристикой поглощения. Фотодиоды являются значительно более быстродействующими, чем фоторезисторы, и широко используются для приема модулированного по интенсивности излучения.  [c.205]

Пламяфотометрический метод основан на возбуждении атомов определяемого элемента действием высокой температуры. Возбужденные атомы, возвращаясь в нормальное, невозбужденное состояние, излучают свет вполне определенной спектральной характеристики, присущей только данному элементу. С помощью специальных светофильтров именно это специфическое излучение может быть отфильтровано от посторонних излучений, и его интенсивность измерена фотоэлементом или фотосопротивлением. Так как интенсивность измеряемого излучения определяется не только концентрацией элемента, но и другими факторами — количеством раствора, попадающего в высокотемпературную область температурой пламени расположением пламени относительно измерителя интенсивности излучения и т. д., то перед определением проводят тарировку с помощью стандартных растворов, стремясь не менять все условия измере-  [c.208]

Сплошной спектр радиоизлучения в пределах отдельных участков радиодиапазона может ot и ывaть я ф-цией = к где — интенсивность излучения частоты V, а — константа, наз. спектральным индексом излучения. Величина а связана с механизмом излучения. Монохроматич. излучение характеризуется длиной волны % и формой линии. Поляризация радиоволн онределяется Стокса параметрами. Протяженные источники характеризуются зависимостью или яркостной температуры Т ,, а и параметров Стокса от угловых координат. Для характеристики 1[еразрешенных источников пользуются спектр, плотностью общего потока 7 и средними значениями а и параметров Стокса. Для нестационарных объектов существенно изменепне этих характеристик во времени.  [c.280]


Смотреть страницы где упоминается термин Интенсивность излучения, спектральные характеристики : [c.160]    [c.155]    [c.82]    [c.98]    [c.207]    [c.256]    [c.472]    [c.185]    [c.200]    [c.294]    [c.354]   
Смотреть главы в:

Синхротронное излучение и его применения  -> Интенсивность излучения, спектральные характеристики



ПОИСК



Излучение спектральное

Интенсивность излучения

Спектральная интенсивност

Спектральная интенсивность

Спектральная интенсивность излучения

Спектральные характеристики

Характеристика интенсивная

Характеристики излучения



© 2025 Mash-xxl.info Реклама на сайте